【数位DP】【P4127】[AHOI2009]同类分布

Description

给出两个数 \(a,~b\) 求出 \([a~,b]\) 中各位数字之和能整除原数的数的个数。

Limitations

\(1 \leq a,~b \leq 10^{18}\)

Solution

考虑数位DP。

设数字 \(A = \sum_{i = 0}^k a_i \times 10^i\),其数字和 \(B = \sum_{i = 0}^k a_i\)

那么 \(A\) 满足条件即为 \(A \equiv 0 \pmod B\),根据同余的性质,可以将求和符号拆开:

\[\sum_{i = 0}^k (a_i \times 10^i \bmod B)~\equiv~0\pmod B \]

考虑 \(B\) 事实上很小,在 \(18\) 位数字都是 \(9\) 的时候也不超过 \(200\),因此可以枚举 \(B\)

\(f_{i, j, k}\) 位考虑前 \(i\) 位,前 \(i\) 位对应模 \(B\) 的值为 \(j\),且后面几位的数字和为 \(k\),不顶上界的方案数,转移时枚举当前这一位是几即可。

Code

// luogu-judger-enable-o2
#include <cstdio>
#include <cstring>

const int maxn = 70;
const int maxm = 163;
const int maxt = 10;

int A[maxn], B[maxn];
ll frog[maxn][maxm][maxm];

int ReadNum(int *p);
ll calc(const int *const num, const int n);

int main() {
  freopen("1.in", "r", stdin);
  int x = ReadNum(A), y = ReadNum(B);
  ll _sum = 0, _val = 0, _ten = 1;
  for (int i = x - 1; ~i; --i) {
    _sum += A[i]; _val += A[i] * _ten;
    _ten *= 10;
  }
  qw(calc(B, y) - calc(A, x) + (!(_val % _sum)), '\n', true);
  return 0;
}

int ReadNum(int *p) {
  auto beg = p;
  do *p = IPT::GetChar() - '0'; while ((*p < 0) || (*p > 9));
  do *(++p) = IPT::GetChar() - '0'; while ((*p <= 9) && (*p >= 0));
  return p - beg;
}

ll calc(const int *const num, const int n) {
  int dn = n - 1;
  if (n <= 1) { return num[0]; }
  ll _ret = 0, _ten = 1;
  for (int i = 1; i < n; ++i) _ten *= 10;
  for (int p = 1; p < maxm; ++p) {
    memset(frog, 0, sizeof frog);
    ll ten = _ten; int tm = ten % p;
    int upc = num[0] * tm % p, left = p - num[0];
    for (int i = 1; i < num[0]; ++i) if (p >= i) {
      frog[0][i * tm % p][p - i] = 1;
    }
    for (int i = 1; i < n; ++i) {
      int di = i - 1;
      tm = (ten /= 10) % p;
      for (int j = 0; j < p; ++j) {
        for (int k = 0; k < p; ++k) {
          for (int h = 0; h < 10; ++h) if ((h + k) <= p) {
            int dh = h * tm % p, dj = j >= dh ? j - dh : j - dh + p;
            frog[i][j][k] += frog[di][dj][k + h];
          }
        }
      }
      for (int j = 1; j < 10; ++j) if (j <= p) {
        ++frog[i][j * tm % p][p - j];
      }
      for (int h = 0; h < num[i]; ++h) if (h <= left) {
        int dh = h * tm % p;
        ++frog[i][(upc + dh) % p][left - h];
      }
      upc = (upc + num[i] * tm) % p; left -= num[i];
    }
    _ret += frog[dn][0][0];
    if ((upc == 0) && (left == 0)) ++_ret;
  }
  return _ret;
}

Summary

逐字符读入 \(L\) 时,\(L - 1\) 并不方便处理,不如改成 \([1, R] - [1,L] + (L\)是否合法\()\)

posted @ 2019-08-24 00:48  一扶苏一  阅读(188)  评论(0编辑  收藏  举报