【最大流/二分图匹配】【网络流24题】【P3254】 圆桌问题
Description
假设有来自m 个不同单位的代表参加一次国际会议。每个单位的代表数分别为ri (i =1,2,……,m)。
会议餐厅共有n 张餐桌,每张餐桌可容纳ci (i =1,2,……,n)个代表就餐。
为了使代表们充分交流,希望从同一个单位来的代表不在同一个餐桌就餐。试设计一个算法,给出满足要求的代表就餐方案。
对于给定的代表数和餐桌数以及餐桌容量,编程计算满足要求的代表就餐方案。输出方案。
Limitation
\(1~\leq~m~\leq~50,~1~\leq~n~\leq~270\)
Solution
好裸的最大流啊……网络流24题怎么有这么水的题……
源点向单位连边,容量为人数
单位向餐桌连边,容量为 \(1\),代表一个餐桌最多做一个该单位的人
餐桌向汇点连边,容量为餐桌大小,代表最多做多少人
跑个最大流就好了……
输出方案的话,对每个单位,枚举看向哪个餐桌的流量为 \(1\) 即可
貌似还可以神仙贪心?
Code
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
#ifdef ONLINE_JUDGE
#define freopen(a, b, c)
#endif
typedef long long int ll;
namespace IPT {
const int L = 1000000;
char buf[L], *front=buf, *end=buf;
char GetChar() {
if (front == end) {
end = buf + fread(front = buf, 1, L, stdin);
if (front == end) return -1;
}
return *(front++);
}
}
template <typename T>
inline void qr(T &x) {
char ch = IPT::GetChar(), lst = ' ';
while ((ch > '9') || (ch < '0')) lst = ch, ch=IPT::GetChar();
while ((ch >= '0') && (ch <= '9')) x = (x << 1) + (x << 3) + (ch ^ 48), ch = IPT::GetChar();
if (lst == '-') x = -x;
}
namespace OPT {
char buf[120];
}
template <typename T>
inline void qw(T x, const char aft, const bool pt) {
if (x < 0) {x = -x, putchar('-');}
int top=0;
do {OPT::buf[++top] = static_cast<char>(x % 10 + '0');} while (x /= 10);
while (top) putchar(OPT::buf[top--]);
if (pt) putchar(aft);
}
const int maxn = 400;
const int INF = 0x3f3f3f3f;
struct Edge {
int u, v, flow;
Edge *nxt, *bk;
Edge(const int _u, const int _v, const int _flow, Edge* &h)
: u(_u), v(_v), flow(_flow), nxt(h) {
h = this;
}
};
Edge *hd[maxn], *fir[maxn];
inline void cont(const int _u, const int _v, const int _flow) {
auto u = new Edge(_u, _v, _flow, hd[_u]), v = new Edge(_v, _u, 0, hd[_v]);
(u->bk = v)->bk = u;
}
int n, m, s, t, ans;
int MU[maxn], CU[maxn], lp[maxn], rp[maxn], dist[maxn];
std::queue<int>Q;
bool bfs();
int dfs(const int u, int canag);
void printans();
int main() {
freopen("1.in", "r", stdin);
qr(n); qr(m);
for (int i = 1; i <= n; ++i) {
qr(MU[i]);
lp[i] = ++t;
}
for (int i = 1; i <= m; ++i) {
qr(CU[i]); rp[i] = ++t;
}
s = ++t; ++t;
for (int i = 1; i <= n; ++i) {
cont(s, lp[i], MU[i]);
}
for (int i = 1; i <= m; ++i) {
cont(rp[i], t, CU[i]);
}
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
cont(lp[i], rp[j], 1);
}
}
while (bfs()) {
for (int i = 1; i <= t; ++i) fir[i] = hd[i];
dfs(s, INF);
}
printans();
return 0;
}
void printans() {
ans = 1;
for (auto e = hd[s]; e; e = e->nxt) {
ans &= (e->flow == 0);
}
qw(ans, '\n', true);
if (ans) {
for (int u = 1; u <= n; ++u) {
for (auto e = hd[u]; e; e = e->nxt) if (e->flow == 0) {
qw(e->v - n, ' ', true);
}
putchar('\n');
}
}
}
bool bfs() {
memset(dist, 0, sizeof dist);
dist[s] = 1; Q.push(s);
while (!Q.empty()) {
int u = Q.front(); Q.pop();
for (auto e = hd[u]; e; e = e->nxt) if (e->flow > 0) {
int v = e->v;
if (dist[v] == 0) {
dist[v] = dist[u] + 1;
Q.push(v);
}
}
}
return dist[t];
}
int dfs(const int u, int canag) {
if ((u == t) || (!canag)) return canag;
int _f = 0;
for (auto &e = fir[u]; e; e = e->nxt) if (e->flow > 0) {
int v = e->v;
if (dist[v] == (dist[u] + 1)) {
int f = dfs(v, std::min(e->flow, canag));
e->flow -= f; e->bk->flow += f; _f += f;
if (!(canag -= f)) {
break;
}
}
}
return _f;
}