【费用流】【网络流24题】【P4014】 分配问题

Description

\(n\) 件工作要分配给 \(n\) 个人做。第 \(i\) 个人做第 \(j\) 件工作产生的效益为 \(C_{i,j}\) 。试设计一个将 \(n\) 件工作分配给 \(n\) 个人做的分配方案,使产生的总效益最大。

Input

文件的第 \(1\) 行有 \(1\) 个正整数 \(n\),表示有 \(n\) 件工作要分配给 \(n\) 个人做。

接下来的 \(n\) 行中,每行有 \(n\) 个整数 \(C_{i,j}\),表示第 \(i\) 个人做第 \(j\) 件工作产生的效益为 \(C_{ij}\)

Output

两行分别输出最小总效益和最大总效益。

Hint

\(1~\leq~n~\leq~100\)

Solution

先考虑最小收益,由于必须所有的工作都被分配,所以这个限制可以转化为最大流,由于是最小费用,所以可以转化成最小费用最大流。

将人和工作之间连边,容量为 \(1\),费用为效益。建立超级源点超级汇点,源点连向人,容量为 \(1\),费用为 \(0\)。工作连向汇点,容量为 \(1\),费用为 \(0\)。这样保证了一个任务选且被选一次,同时费用即为收益。

考虑最大收益:将所有费用取相反数,求出答案再取相反即可。

Code

#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
#ifdef ONLINE_JUDGE
#define freopen(a, b, c)
#endif
#define ci const int
#define cl const long long

typedef long long int ll;

namespace IPT {
	const int L = 1000000;
	char buf[L], *front=buf, *end=buf;
	char GetChar() {
		if (front == end) {
			end = buf + fread(front = buf, 1, L, stdin);
			if (front == end) return -1;
		}
		return *(front++);
	}
}

template <typename T>
inline void qr(T &x) {
	char ch = IPT::GetChar(), lst = ' ';
	while ((ch > '9') || (ch < '0')) lst = ch, ch=IPT::GetChar();
	while ((ch >= '0') && (ch <= '9')) x = (x << 1) + (x << 3) + (ch ^ 48), ch = IPT::GetChar();
	if (lst == '-') x = -x;
}

template <typename T>
inline void ReadDb(T &x) {
	char ch = IPT::GetChar(), lst = ' ';
	while ((ch > '9') || (ch < '0')) lst = ch, ch = IPT::GetChar();
	while ((ch >= '0') && (ch <= '9')) x = x * 10 + (ch ^ 48), ch = IPT::GetChar();
	if (ch == '.') {
		ch = IPT::GetChar();
		double base = 1;
		while ((ch >= '0') && (ch <= '9')) x += (ch ^ 48) * ((base *= 0.1)), ch = IPT::GetChar();
	}
	if (lst == '-') x = -x;
}

namespace OPT {
	char buf[120];
}

template <typename T>
inline void qw(T x, const char aft, const bool pt) {
	if (x < 0) {x = -x, putchar('-');}
	int top=0;
	do {OPT::buf[++top] = static_cast<char>(x % 10 + '0');} while (x /= 10);
	while (top) putchar(OPT::buf[top--]);
	if (pt) putchar(aft);
}

const int maxn = 210;
const int INF = 0x3f3f3f3f;

struct Edge {
	int from, to, flow, fee;
	Edge *nxt, *bk;
};
Edge *hd[maxn], *pre[maxn];
inline void cont(Edge *u, Edge *v, int from, int to, int fl, int fe) {
	u->from = from; u->to = to; u->flow = fl; u->fee = fe; u->bk = v;
	u->nxt = hd[from]; hd[from] = u;
}
inline void conet(int from, int to, int fl, int fe) {
	Edge *u = new Edge, *v = new Edge;
	cont(u, v, from, to, fl, fe); cont(v, u, to, from, 0, -fe);
}

int n, s, t, ans;
int cost[maxn], maxflw[maxn], MU[maxn][maxn];
bool inq[maxn];
std::queue<int>Q;

bool SPFA();
void argu();

int main() {
	freopen("1.in", "r", stdin);
	qr(n);
	for (int i = 1; i <= n; ++i) {
		for (int j = 1; j <= n; ++j) {
			qr(MU[i][j]); conet(i, j + n, 1, MU[i][j]);
		}
	}
	s = (n << 1) | 1; t = (n << 1) + 2;
	for (int i = 1; i <= n; ++i) conet(s, i, 1, 0);
	for (int i = n + 1; i < s; ++i) conet(i, t, 1, 0);
	ans = 0;
	while (SPFA()) argu();
	qw(ans, '\n', true);
	memset(hd, 0, sizeof hd);
	for (int i = 1; i <= n; ++i) {
		for (int j = 1; j <= n; ++j) conet(i, j + n, 1, -MU[i][j]);
	}
	for (int i = 1; i <= n; ++i) conet(s, i, 1, 0);
	for (int i = n + 1; i < s; ++i) conet(i, t, 1, 0);
	ans = 0;
	while (SPFA()) argu();
	qw(-ans, '\n', true);
	return 0;
}

bool SPFA() {
	memset(cost, 0x3f, sizeof cost);
	memset(inq, 0, sizeof inq);
	memset(pre, 0, sizeof pre);
	memset(maxflw, 0, sizeof maxflw);
	cost[s] = 0; Q.push(s); maxflw[s] = INF;
	while (!Q.empty()) {
		int h = Q.front(); Q.pop(); inq[h] = false;
		if (!maxflw[h]) continue;
		for (Edge *e = hd[h]; e; e = e->nxt) if (e->flow > 0) {
			int to = e->to;
			if (cost[to] > (cost[h] + e->fee)) {
				cost[to] = cost[h] + e->fee;
				maxflw[to] = std::min(maxflw[h], e->flow);
				if (!inq[to]) Q.push(to);
				inq[to] = true; pre[to] = e;
			}
		}
	}
	return cost[t] != INF;
}

void argu() {
	for (Edge *e = pre[t]; e; e = pre[e->from]) {
		e->flow -= maxflw[t];
		e->bk->flow += maxflw[t];
	}
	ans += maxflw[t] * cost[t];
}
posted @ 2019-02-20 16:56  一扶苏一  阅读(158)  评论(0编辑  收藏  举报