【线性基/神仙题】P4151 [WC2011]最大XOR和路径
Description
给定一个无向连通图,边有边权,求一个 \(1~\sim n\) 的路径,最大化边权的异或和。如果一条边经过多次则计算多次。
Input
第一行是两个整数 \(n,m\) 代表点数和边数
下面 \(m\) 行每行三个整数描述一条边
Output
输出一行一个整数代表答案
Hint
\(1~\leq~n~\leq~50000,1~\leq~m~\leq~100000,1~\leq~\) 边权 \(\leq~10^{18}\)
Solution
首先注意到一个结论:对于所有的简单环,环上边权的异或和都可以无代价的获取。原因是可以从一号点出发进入该环绕一圈后原路返回。由于一条路径绕两边对答案的贡献为 \(0\) ,所以这些简单环的异或和都可以无代价取得。那么现在问题就转化成了寻找一条 \(1\) 到 \(n\) 的路径,再异或上一些简单环的异或和,最大化答案。
我们考虑应该寻找哪一条路径:事实上任选一条路径即可。原因是选择的路径和答案路径一定可以构成一个环,所以异或上该环的权值就可以得到最优解。
考虑最大化异或和可以使用线性基解决。时间复杂度 \(O(m~+~n~\log^2d)\),其中 \(d\) 为边权
Code
#include <cstdio>
#include <algorithm>
#ifdef ONLINE_JUDGE
#define freopen(a, b, c)
#define printtime()
#else
#include <ctime>
#define printtime() printf("Times used = %ld ms\n", clock())
#endif
#define ci const int
#define cl const long long
typedef long long int ll;
namespace IPT {
const int L = 1000000;
char buf[L], *front=buf, *end=buf;
char GetChar() {
if (front == end) {
end = buf + fread(front = buf, 1, L, stdin);
if (front == end) return -1;
}
return *(front++);
}
}
template <typename T>
inline void qr(T &x) {
char ch = IPT::GetChar(), lst = ' ';
while ((ch > '9') || (ch < '0')) lst = ch, ch=IPT::GetChar();
while ((ch >= '0') && (ch <= '9')) x = (x << 1) + (x << 3) + (ch ^ 48), ch = IPT::GetChar();
if (lst == '-') x = -x;
}
template <typename T>
inline void ReadDb(T &x) {
char ch = IPT::GetChar(), lst = ' ';
while ((ch > '9') || (ch < '0')) lst = ch, ch = IPT::GetChar();
while ((ch >= '0') && (ch <= '9')) x = x * 10 + (ch ^ 48), ch = IPT::GetChar();
if (ch == '.') {
ch = IPT::GetChar();
double base = 1;
while ((ch >= '0') && (ch <= '9')) x += (ch ^ 48) * ((base *= 0.1)), ch = IPT::GetChar();
}
if (lst == '-') x = -x;
}
namespace OPT {
char buf[120];
}
template <typename T>
inline void qw(T x, const char aft, const bool pt) {
if (x < 0) {x = -x, putchar('-');}
int top=0;
do {OPT::buf[++top] = static_cast<char>(x % 10 + '0');} while (x /= 10);
while (top) putchar(OPT::buf[top--]);
if (pt) putchar(aft);
}
const int maxn = 50010;
const int maxm = 200010;
const int maxl = 61;
struct Edge {
int to;
ll v;
Edge *nxt;
};
Edge edge[maxm], *hd[maxn]; int ecnt;
inline void cont(ci from, ci to, cl v) {
Edge &e = edge[++ecnt];
e.to = to; e.nxt = hd[from]; e.v = v; hd[from] = &e;
}
int n, m;
ll ans;
bool vis[maxn];
ll val[maxn], lb[maxl];
void reading();
void insert(ll);
void dfs(ci, cl);
int main() {
freopen("1.in", "r", stdin);
qr(n); qr(m);
reading();
dfs(1, 0);
for (int i = maxl - 1; ~i; --i) {
ans = std::max(ans, ans ^ lb[i]);
}
qw(ans, '\n', true);
printtime();
return 0;
}
void reading() {
int a, b; ll c;
for (int i = 1; i <= m; ++i) {
a = 0; b = 0; c = 0; qr(a); qr(b); qr(c);
cont(a, b, c); cont(b, a, c);
}
}
void dfs(ci u, cl tp) {
vis[u] = true; val[u] = tp;
if (u == n) ans = tp;
for (Edge *e = hd[u]; e; e = e->nxt) {
int to = e->to;
if (!vis[to]) dfs(to, tp ^ e->v);
else insert(tp ^ e->v ^ val[to]);
}
}
void insert(ll x) {
for (int i = maxl - 1; ~i; --i) if (x & (1ll << i)) {
if (lb[i]) {
x ^= lb[i];
} else {
lb[i] = x;
for (int j = maxl - 1; j > i; --j) if (lb[j]) {
lb[j] ^= x;
}
for (int j = 0; j < i; ++j) if (lb[j] & (1ll << i)) {
lb[i] ^= lb[j];
}
break;
}
}
}