【数据结构】【CF1073D】 Berland Fair

Description

给定 \(n\) 个商店,他们围成一个圆圈,按照顺时针从 \(1\)\(n\) 编号。你有 \(T\) 元钱,从 \(1\) 号点开始按照顺时针方向走,每到一个商店,只要钱够就必须买这个商店的物品。商店中物品是无限的,即多次到达可能多次购买。求会买多少件物品

Input

第一行是一个整数 \(n\)

下面一行 \(n\) 个整数 \(a_i\),代表每个商店物品的价格

Output

一行一个整数代表答案

Hint

\(1~\leq~n~\leq~2~\times~10^5~,~1~\leq~T~\leq~10^{18}~,~1~\leq~a_i~\leq~10^9\)

Solution

解法一:

显然在钱数充足是我们可以直接除一下得到我们可以转多少圈,\(O(1)\) 统计这部分答案,然后把钱数取模即为这些圈转完后我们剩下的钱,这时的钱数是不足以转完一圈的。

下面我们考虑用这些钱可以连续走多远,即会到哪一个商店停下来。注意到这个值是可以二分的,具体的,我们维护一个前缀和,二分哪个位置的前缀和是最大的小于钱数的即可。然后剩下那个位置的商店显然再也不会被购买到了,于是可以将它直接删去,然后统计这一段连续走的位置的答案。删除这个位置后的前缀和可以用树状数组或线段树维护,一段区间中还剩多少个没有被删去的位置也可以树状数组维护。对于这个位置后面能连续走到哪里,我们依然可以二分这个值,以此类推直到一圈走完,然后从头开始重复流程即可。

注意到每次二分我们一定会删除一个位置,所以我们会二分 \(O(n)\) 次,直接二分+树状数组/线段树的话,单次二分复杂度 \(O(\log^2 n)\),总复杂度 \(O(n \log^2 n)\)。如果在线段树上二分,单次复杂度可以做到 \(O(\log n)\),总复杂度 \(O(n \log n)\)

但是天知道为什么我的两个log算法跑的比一个log的还快

解法二:

算出当前的钱数可以走多少圈的方法同上,然后考虑我们暴力跑一圈,统计有哪些位置的是不能被购买到的,直接删掉。然后用剩下的钱再取模。

注意到 \(T\) 每次取模时的模数一定小于 \(T\),而一个数被比自己小的数取模至少减少二分之一,证明上可以分模数大于或小于等于 \(\frac{m}{2}\) 进行讨论。于是 \(T\) 被取模 \(O(\log T)\) 次,每次对应一次 \(O(n)\) 的统计答案,于是总复杂度 \(O(n \log T)\)

Code

依据解法一写成。

\(O(n \log^2n)\)

#include <cstdio>
#ifdef ONLINE_JUDGE
#define freopen(a, b, c)
#endif
#define rg register
#define ci const int
#define cl const long long

typedef long long  ll;

namespace IPT {
	const int L = 1000000;
	char buf[L], *front=buf, *end=buf;
	char GetChar() {
		if (front == end) {
			end = buf + fread(front = buf, 1, L, stdin);
			if (front == end) return -1;
		}
		return *(front++);
	}
}

template <typename T>
inline void qr(T &x) {
	rg char ch = IPT::GetChar(), lst = ' ';
	while ((ch > '9') || (ch < '0')) lst = ch, ch=IPT::GetChar();
	while ((ch >= '0') && (ch <= '9')) x = (x << 1) + (x << 3) + (ch ^ 48), ch = IPT::GetChar();
	if (lst == '-') x = -x;
}

template <typename T>
inline void ReadDb(T &x) {
	rg char ch = IPT::GetChar(), lst = ' ';
	while ((ch > '9') || (ch < '0')) lst = ch, ch = IPT::GetChar();
	while ((ch >= '0') && (ch <= '9')) x = x * 10 + (ch ^ 48), ch = IPT::GetChar();
	if (ch == '.') {
		ch = IPT::GetChar();
		double base = 1;
		while ((ch >= '0') && (ch <= '9')) x += (ch ^ 48) * ((base *= 0.1)), ch = IPT::GetChar();
	}
	if (lst == '-') x = -x;
}

namespace OPT {
	char buf[120];
}

template <typename T>
inline void qw(T x, const char aft, const bool pt) {
	if (x < 0) {x = -x, putchar('-');}
	rg int top=0;
	do {OPT::buf[++top] = x % 10 + '0';} while (x /= 10);
	while (top) putchar(OPT::buf[top--]);
	if (pt) putchar(aft);
}

const int maxn = 200010;

int n;
ll t, ans;
int MU[maxn];
ll tree[maxn], val[maxn];

inline int lowbit(ci x) {return x & (-x);}

ll ask(ll*, int);
int check(int, ll);
void update(ll*, int, ci);

signed main() {
	freopen("1.in", "r", stdin);
	qr(n); qr(t);
	for (rg int i = 1; i <= n; ++i) {qr(MU[i]); update(tree, i, MU[i]); update(val, i, 1);}
	ll s = ask(tree, n); int cnt = n;
	while (cnt) {
		if (!t) break;
		ans += t / s * cnt; t %= s;
		int k = 0;
		do {
			int pre = k;
			k = check(k, t);
			if (k > n) {
				t -= ask(tree, n) - ask(tree, pre);
				ans += ask(val, n) - ask(val, pre);
				break;
			};
			update(tree, k, -MU[k]); update(val, k, -1); --cnt;
			t -= ask(tree, k - 1) - ask(tree, pre);
			s -= MU[k];
			ans += ask(val, k) - ask(val, pre);
		} while (cnt && t);
	}
	qw(ans, '\n', true);
}

void update(ll *ar, int x, ci v) {
	while (x <= n) {
		ar[x] += v;
		x += lowbit(x);
	}
}

ll ask(ll* ar, int x) {
	ll _ret = 0;
	while (x) {
		_ret += ar[x];
		x -= lowbit(x);
	}
	return _ret;
}

int check(int pre, ll x) {
	int l = pre, r = n + 1, mid = l, _ret = 0;
	while (l <= r) {
		mid = (l + r) >> 1;
		if ((ask(tree, mid) - ask(tree, pre)) <= x) _ret = mid, l = mid + 1;
		else r = mid - 1;
	}
	return _ret + 1;
}

\(O(n \log n)\)

#include <ctime>
#include <cstdio>
#ifdef ONLINE_JUDGE
#define freopen(a, b, c)
#endif
#define rg register
#define ci const int
#define cl const long long

typedef long long ll;

namespace IPT {
	const int L = 1000000;
	char buf[L], *front=buf, *end=buf;
	char GetChar() {
		if (front == end) {
			end = buf + fread(front = buf, 1, L, stdin);
			if (front == end) return -1;
		}
		return *(front++);
	}
}

template <typename T>
inline void qr(T &x) {
	rg char ch = IPT::GetChar(), lst = ' ';
	while ((ch > '9') || (ch < '0')) lst = ch, ch=IPT::GetChar();
	while ((ch >= '0') && (ch <= '9')) x = (x << 1) + (x << 3) + (ch ^ 48), ch = IPT::GetChar();
	if (lst == '-') x = -x;
}

template <typename T>
inline void ReadDb(T &x) {
	rg char ch = IPT::GetChar(), lst = ' ';
	while ((ch > '9') || (ch < '0')) lst = ch, ch = IPT::GetChar();
	while ((ch >= '0') && (ch <= '9')) x = x * 10 + (ch ^ 48), ch = IPT::GetChar();
	if (ch == '.') {
		ch = IPT::GetChar();
		double base = 1;
		while ((ch >= '0') && (ch <= '9')) x += (ch ^ 48) * ((base *= 0.1)), ch = IPT::GetChar();
	}
	if (lst == '-') x = -x;
}

namespace OPT {
	int buf[120];
}

template <typename T>
inline void qw(T x, const char aft, const bool pt) {
	if (x < 0) {x = -x, putchar('-');}
	rg int top=0;
	do {OPT::buf[++top] = int(x % 10 + '0');} while (x /= 10);
	while (top) putchar(OPT::buf[top--]);
	if (pt) putchar(aft);
}

const int maxn = 200010;
const int maxt = 400010;

int n;
ll t, ans;
int tree[maxn], MU[maxn];

struct Tree {
	Tree *ls, *rs;
	int l, r;
	ll v;
	
	inline void pushup() {
		this->v = this->ls ? (this->rs ? this->ls->v + this->rs->v : this->ls->v) : this->rs->v;
	}
};
Tree *pool[maxt], qwq[maxt], *rot;
int top;

inline int lowbit(ci x) {return x & -x;}

int check(int, ll);
void buildpool();
void build(Tree*, ci, ci);
void update(int, ci);
void update(Tree*, ci);
ll ask(Tree*, ci, ci);
int ask(int);
int ask(Tree*, cl);

signed main() {
	freopen("1.in", "r", stdin);
	qr(n); qr(t); ll s = 0; 
	for (rg int i = 1; i <= n; ++i) {qr(MU[i]); s+= MU[i]; update(i, 1);}
	int cnt = n;
	buildpool();
	build(rot, 1, n);
	while (cnt) {
		if (!t) break;
		ans += t / s * cnt; t %= s;
		int k = 0;
		do {
			int pre = k;
			k = check(k, t);
			if (k > n) {
				t -= ask(rot, pre + 1, n);
				ans += ask(n) - ask(pre);
				break;
			};
			update(rot, k); update(k, -1); --cnt;
			t -= ask(rot, pre, k - 1);
			s -= MU[k];
			ans += ask(k) - ask(pre);
		} while (cnt && t);
	}
	qw(ans, '\n', true);
}


int check(int pre, ll x) {
	x += ask(rot, 1, pre);
	ll s = ask(rot, 1, n);
	if (s <= x) return n + 1;
	return ask(rot, x);
}

void buildpool() {
	for (rg int i = 0; i < maxt; ++i) pool[i] = qwq + i;
	rot = pool[maxt - 1];  top = maxt - 2;
}

void build(Tree *u, ci l, ci r) {
	u->l = l; u->r = r;
	if (l == r) {u->v = MU[l]; return;}
	int mid = (l + r) >> 1;
	if (l <= mid) build(u->ls = pool[top--], l, mid);
	if (mid < r) build(u->rs = pool[top--], mid + 1, r);
	u->pushup();
}

void update(int x,ci v) {
	while (x <= n) {
		tree[x] += v;
		x += lowbit(x);
	}
}

void update(Tree* u, ci x) {
	if ((u->l > x) || (u->r < x)) return;
	if (u->l == u->r) {u->v = 0; return;}
	if (u->ls) update(u->ls, x);
	if (u->rs) update(u->rs, x);
	u->pushup();
}

int ask(int x) {
	int _ret = 0;
	while (x) {
		_ret += tree[x];
		x -= lowbit(x);
	}
	return _ret;
}

ll ask(Tree *u, ci l, ci r) {
	if ((u->l > r) || (u->r < l)) return 0;
	if ((u->l >= l) && (u->r <= r)) return u->v;
	return u->ls ? (u->rs ? ask(u->ls, l, r) + ask(u->rs, l, r) : ask(u->ls, l, r)) : ask(u->rs, l, r);
}

int ask(Tree *u, cl v) {
	if (u->l == u->r) return u->l;
	if (u->ls->v <= v) return ask(u->rs, v - u->ls->v);
	else return ask(u->ls, v);
}

Summary

该define int ll就要define啊= =要不然可能会fst的很惨= =

一个数对比自己小的数取模一次至少减少一半。

posted @ 2019-01-04 15:28  一扶苏一  阅读(429)  评论(0编辑  收藏  举报