【字符串】manacher算法

Definition

定义一个回文串为从字符串两侧向中心扫描时,左右指针指向得字符始终相同的字符串。

使用manacher算法可以在线性时间内求解出一个字符串的最长回文子串。

Solution

考虑回文串有两种:第一种对称轴在两字符之间,另一种对称轴在一个字符中心。这样分情况讨论十分不方便,我们使用一种奇技淫巧将之统一成长度为奇数的回文串,即对称轴在字符中心:将原串每两个字符之间都添加一个相同的、不在原串中的字符。显然长度为偶数的回文串对称轴会在添加的字符上,问题就得到了解决。例如:

qwq

接着发现一个回文半径为len的新串,对应老串的回文长度为len-1。证明可以根据老串的对称中心分类讨论。

于是对于每一个回文中心记录一个len作为新串的以它为中心的回文子串长度,问题就转化为了求len数组。

接着继续分类讨论:

我们从左向右扫描数组,扫描到\(i\)时,\(\forall~j~<~i\)\(len_j\)都已经被算出来了。

我们设一个辅助变量pos为当前所有回文子串中,右端点最靠右的回文子串的右端点位置,然后对每个pos记录它是哪个回文中心延伸而成的,即为pre。下面可以分两种情况讨论:

一、\(i~\leq~pos\)

这种情况下,\(i\)一定在pos所在的回文串内部,我们找到\(i\)关于\(pre_{pos}\)的对称点\(j\),再次分两种情况讨论:

1、1 \(len_j~<~pos~-~i\)

这也就说明以\(j\)为回文中心的回文子串是大回文子串的子串,因为\(i\)也属于大回文子串,所以\(j\)所在的回文子串也是关于\(pre_{pos}\)对称的,于是显然有\(len_i~=~len_j\)

1、2 \(len_j~\geq~pos~-~i\)

这说明以\(j\)为中心的回文子串不是大回文子串的内部,但是一直到大回文子串的边界它的回文性质都是成立的,因为对称性,所以\(i~\sim~pos\)的回文性质都是成立的,于是可以从\(pos~+~1\)开始暴力判断。

二、\(i~>~pos\)

这种情况下,没有能与\(i\)对称的位置,直接暴力向后扫描。

考虑复杂度:

发现每次暴力判断,pos一定会增加,于是最多暴力判断\(O(n)\)次。剩下的操作都是\(O(1)\)。于是复杂度为\(O(n)\)

Example

P3805manacher算法

Description

给出一个只由小写英文字符a,b,c...y,z组成的字符串S,求S中最长回文串的长度.

Input

一行一个字符串

Output

一行一个数表示答案

Hint

长度小于1.1e8,保证数据合法。

Solution

板子题要啥solution

Code

#include <cstdio>
#include <algorithm>
#ifdef ONLINE_JUDGE
#define freopen(a, b, c)
#endif
#define rg register
#define ci const int
#define cl const long long

typedef long long int ll;

namespace IPT {
    const int L = 1000000;
    char buf[L], *front=buf, *end=buf;
    char GetChar() {
        if (front == end) {
            end = buf + fread(front = buf, 1, L, stdin);
            if (front == end) return -1;
        }
        return *(front++);
    }
}

template <typename T>
inline void qr(T &x) {
    rg char ch = IPT::GetChar(), lst = ' ';
    while ((ch > '9') || (ch < '0')) lst = ch, ch=IPT::GetChar();
    while ((ch >= '0') && (ch <= '9')) x = (x << 1) + (x << 3) + (ch ^ 48), ch = IPT::GetChar();
    if (lst == '-') x = -x;
}

template <typename T>
inline void ReadDb(T &x) {
    rg char ch = IPT::GetChar(), lst = ' ';
    while ((ch > '9') || (ch < '0')) lst = ch, ch = IPT::GetChar();
    while ((ch >= '0') && (ch <= '9')) x = x * 10 + (ch ^ 48), ch = IPT::GetChar();
    if (ch == '.') {
        ch = IPT::GetChar();
        double base = 1;
        while ((ch >= '0') && (ch <= '9')) x += (ch ^ 48) * ((base *= 0.1)), ch = IPT::GetChar();
    }
    if (lst == '-') x = -x;
}

namespace OPT {
    char buf[120];
}

template <typename T>
inline void qw(T x, const char aft, const bool pt) {
    if (x < 0) {x = -x, putchar('-');}
    rg int top=0;
    do {OPT::buf[++top] = x % 10 + '0';} while (x /= 10);
    while (top) putchar(OPT::buf[top--]);
    if (pt) putchar(aft);
}

const int maxn = 22000010;

char MU[maxn], temp[maxn];
int lenth[maxn], pre[maxn], pos;

int main() {
    freopen("1.in", "r", stdin);
    int len = 0;
    while(~(MU[++len] = IPT::GetChar()));
    MU[len--] = '\0';
    temp[0] = '$';
    for (rg int i = 1; i <= len; ++i) temp[(i << 1) - 1] = '$' , temp[i << 1] = MU[i];
    temp[len = (len << 1) + 1] = '$';
    for (rg int i = 1; i <= len; ++i) {
        if (i <= pos) {
            int mid = pre[pos], j = (mid << 1) - i;
            if (lenth[j] < (pos - i)) lenth[i] = lenth[j];
            else {
                j = (i << 1) - pos;
                while(temp[j] == temp[pos]) ++pos,--j;
                pre[--pos] = i; lenth[i] = pos - i + 1;
            }
        } else {
            pos = i; int j = i;
            while(temp[j] == temp[pos]) ++pos,--j;
            pre[--pos] = i; lenth[i] = pos - i + 1;
        }
    }
    int ans = 0;
    for (rg int i = 1; i <= len; ++i) {
        ans = std::max(ans, lenth[i]);
    }
    qw(ans - 1, '\n', true);
    return 0;
}

Summary

我可总算把智推两个月的manecher学完了……

posted @ 2018-12-05 17:21  一扶苏一  阅读(201)  评论(0编辑  收藏  举报