【文本分类-06】Transformer

目录

  1. 大纲概述
  2. 数据集合
  3. 数据处理
  4. 预训练word2vec模型

一、大纲概述

文本分类这个系列将会有8篇左右文章,从github直接下载代码,从百度云下载训练数据,在pycharm上导入即可使用,包括基于word2vec预训练的文本分类,与及基于近几年的预训练模型(ELMo,BERT等)的文本分类。总共有以下系列:

word2vec预训练词向量

textCNN 模型

charCNN 模型

Bi-LSTM 模型

Bi-LSTM + Attention 模型

Transformer 模型

ELMo 预训练模型

BERT 预训练模型

二、数据集合

数据集为IMDB 电影影评,总共有三个数据文件,在/data/rawData目录下,包括unlabeledTrainData.tsv,labeledTrainData.tsv,testData.tsv。在进行文本分类时需要有标签的数据(labeledTrainData),但是在训练word2vec词向量模型(无监督学习)时可以将无标签的数据一起用上。

训练数据地址:链接:https://pan.baidu.com/s/1-XEwx1ai8kkGsMagIFKX_g 提取码:rtz8

   

Transformer模型的相关介绍可见这几篇文章:介绍源码讲解

三、主要代码 

3.1 配置训练参数:parameter_config.py

    1 	# Author:yifan
    2 	#需要的所有导入包,存放留用,转换到jupyter后直接使用
    3 	# 1 配置训练参数
    4 	class TrainingConfig(object):
    5 	    epoches = 4
    6 	    evaluateEvery = 100
    7 	    checkpointEvery = 100
    8 	    learningRate = 0.001
    9 	    
   10 	class ModelConfig(object):
   11 	    embeddingSize = 200
   12 	    filters = 128  #内层一维卷积核的数量,外层卷积核的数量应该等于embeddingSize,因为要确保每个layer后的输出维度和输入维度是一致的。
   13 	    numHeads = 8  # Attention 的头数
   14 	    numBlocks = 1  # 设置transformer block的数量
   15 	    epsilon = 1e-8  # LayerNorm 层中的最小除数
   16 	    keepProp = 0.9  # multi head attention 中的dropout
   17 	    dropoutKeepProb = 0.5  # 全连接层的dropout
   18 	    l2RegLambda = 0.0
   19 	    
   20 	class Config(object):
   21 	    sequenceLength = 200  # 取了所有序列长度的均值
   22 	    batchSize = 128
   23 	    dataSource = "../data/preProcess/labeledTrain.csv"
   24 	    stopWordSource = "../data/english"
   25 	    numClasses = 1  # 二分类设置为1,多分类设置为类别的数目
   26 	    rate = 0.8  # 训练集的比例
   27 	    training = TrainingConfig()
   28 	    model = ModelConfig()
   29 	    
   30 	# 实例化配置参数对象
   31 	config = Config()

3.2 获取训练数据:get_train_data.py

# Author:yifan
import json
from collections import Counter
import gensim
import pandas as pd
import numpy as np
import parameter_config

# 2 数据预处理的类,生成训练集和测试集
class Dataset(object):
    def __init__(self, config):
        self.config = config
        self._dataSource = config.dataSource
        self._stopWordSource = config.stopWordSource
        self._sequenceLength = config.sequenceLength  # 每条输入的序列处理为定长
        self._embeddingSize = config.model.embeddingSize
        self._batchSize = config.batchSize
        self._rate = config.rate
        self._stopWordDict = {}
        self.trainReviews = []
        self.trainLabels = []
        self.evalReviews = []
        self.evalLabels = []
        self.wordEmbedding = None
        self.labelList = []
    def _readData(self, filePath):
        """
        从csv文件中读取数据集,就本次测试的文件做记录
        """
        df = pd.read_csv(filePath)  #读取文件,是三列的数据,第一列是review,第二列sentiment,第三列rate
        if self.config.numClasses == 1:
            labels = df["sentiment"].tolist()  #读取sentiment列的数据,  显示输出01序列数组25000条
        elif self.config.numClasses > 1:
            labels = df["rate"].tolist()   #因为numClasses控制,本次取样没有取超过二分类  该处没有输出
        review = df["review"].tolist()
        reviews = [line.strip().split() for line in review]  #按空格语句切分
        return reviews, labels
    def _labelToIndex(self, labels, label2idx):
        """
        将标签转换成索引表示
        """
        labelIds = [label2idx[label] for label in labels]   #print(labels==labelIds) 结果显示为true,也就是两个一样
        return labelIds
    def _wordToIndex(self, reviews, word2idx):
        """将词转换成索引"""
        reviewIds = [[word2idx.get(item, word2idx["UNK"]) for item in review] for review in reviews]
        # print(max(max(reviewIds)))
        # print(reviewIds)
        return reviewIds  #返回25000个无序的数组
    def _genTrainEvalData(self, x, y, word2idx, rate):
        """生成训练集和验证集 """
        reviews = []
        # print(self._sequenceLength)
        # print(len(x))
        for review in x:   #self._sequenceLength为200,表示长的切成200,短的补齐,x数据依旧是25000
            if len(review) >= self._sequenceLength:
                reviews.append(review[:self._sequenceLength])
            else:
                reviews.append(review + [word2idx["PAD"]] * (self._sequenceLength - len(review)))
                # print(len(review + [word2idx["PAD"]] * (self._sequenceLength - len(review))))
        #以下是按照rate比例切分训练和测试数据:
        trainIndex = int(len(x) * rate)
        trainReviews = np.asarray(reviews[:trainIndex], dtype="int64")
        trainLabels = np.array(y[:trainIndex], dtype="float32")
        evalReviews = np.asarray(reviews[trainIndex:], dtype="int64")
        evalLabels = np.array(y[trainIndex:], dtype="float32")
        return trainReviews, trainLabels, evalReviews, evalLabels

    def _getWordEmbedding(self, words):
        """按照我们的数据集中的单词取出预训练好的word2vec中的词向量
        反馈词和对应的向量(200维度),另外前面增加PAD对用0的数组,UNK对应随机数组。
        """
        wordVec = gensim.models.KeyedVectors.load_word2vec_format("../word2vec/word2Vec.bin", binary=True)
        vocab = []
        wordEmbedding = []
        # 添加 "pad" 和 "UNK",
        vocab.append("PAD")
        vocab.append("UNK")
        wordEmbedding.append(np.zeros(self._embeddingSize))  # _embeddingSize 本文定义的是200
        wordEmbedding.append(np.random.randn(self._embeddingSize))
        # print(wordEmbedding)
        for word in words:
            try:
                vector = wordVec.wv[word]
                vocab.append(word)
                wordEmbedding.append(vector)
            except:
                print(word + "不存在于词向量中")
        # print(vocab[:3],wordEmbedding[:3])
        return vocab, np.array(wordEmbedding)
    def _genVocabulary(self, reviews, labels):
        """生成词向量和词汇-索引映射字典,可以用全数据集"""
        allWords = [word for review in reviews for word in review]   #单词数量5738236   reviews是25000个观点句子【】
        subWords = [word for word in allWords if word not in self.stopWordDict]   # 去掉停用词
        wordCount = Counter(subWords)  # 统计词频
        sortWordCount = sorted(wordCount.items(), key=lambda x: x[1], reverse=True) #返回键值对,并按照数量排序
        # print(len(sortWordCount))  #161330
        # print(sortWordCount[:4],sortWordCount[-4:]) # [('movie', 41104), ('film', 36981), ('one', 24966), ('like', 19490)] [('daeseleires', 1), ('nice310', 1), ('shortsightedness', 1), ('unfairness', 1)]
        words = [item[0] for item in sortWordCount if item[1] >= 5]   # 去除低频词,低于5的
        vocab, wordEmbedding = self._getWordEmbedding(words)
        self.wordEmbedding = wordEmbedding
        word2idx = dict(zip(vocab, list(range(len(vocab)))))   #生成类似这种{'I': 0, 'love': 1, 'yanzi': 2}
        uniqueLabel = list(set(labels))    #标签去重  最后就 0  1了
        label2idx = dict(zip(uniqueLabel, list(range(len(uniqueLabel))))) #本文就 {0: 0, 1: 1}
        self.labelList = list(range(len(uniqueLabel)))
        # 将词汇-索引映射表保存为json数据,之后做inference时直接加载来处理数据
        with open("../data/wordJson/word2idx.json", "w", encoding="utf-8") as f:
            json.dump(word2idx, f)
        with open("../data/wordJson/label2idx.json", "w", encoding="utf-8") as f:
            json.dump(label2idx, f)
        return word2idx, label2idx

    def _readStopWord(self, stopWordPath):
        """
        读取停用词
        """
        with open(stopWordPath, "r") as f:
            stopWords = f.read()
            stopWordList = stopWords.splitlines()
            # 将停用词用列表的形式生成,之后查找停用词时会比较快
            self.stopWordDict = dict(zip(stopWordList, list(range(len(stopWordList)))))

    def dataGen(self):
        """
        初始化训练集和验证集
        """
        # 初始化停用词
        self._readStopWord(self._stopWordSource)
        # 初始化数据集
        reviews, labels = self._readData(self._dataSource)
        # 初始化词汇-索引映射表和词向量矩阵
        word2idx, label2idx = self._genVocabulary(reviews, labels)
        # 将标签和句子数值化
        labelIds = self._labelToIndex(labels, label2idx)
        reviewIds = self._wordToIndex(reviews, word2idx)
        # 初始化训练集和测试集
        trainReviews, trainLabels, evalReviews, evalLabels = self._genTrainEvalData(reviewIds, labelIds, word2idx,
                                                                                    self._rate)
        self.trainReviews = trainReviews
        self.trainLabels = trainLabels

        self.evalReviews = evalReviews
        self.evalLabels = evalLabels

#获取前些模块的数据
# config =parameter_config.Config()
# data = Dataset(config)
# data.dataGen()

3.3 模型构建:mode_structure.py

关于transformer模型的一些使用心得:

1)在这里选择固定的one-hot的position embedding比论文中提出的利用正弦余弦函数生成的position embedding的效果要好,可能的原因是论文中提出的position embedding是作为可训练的值传入的,

这样就增加了模型的复杂度,在小数据集(IMDB训练集大小:20000)上导致性能有所下降。

2)mask可能不需要,添加mask和去除mask对结果基本没啥影响,也许在其他的任务或者数据集上有作用,但论文也并没有提出一定要在encoder结构中加入mask,mask更多的是用在decoder。

3)transformer的层数,transformer的层数可以根据自己的数据集大小调整,在小数据集上基本上一层就够了。

4)在subLayers上加dropout正则化,主要是在multi-head attention层加,因为feed forward是用卷积实现的,不加dropout应该没关系,当然如果feed forward用全连接层实现,那也加上dropout。

5)在小数据集上transformer的效果并不一定比Bi-LSTM + Attention好,在IMDB上效果就更差。

    1 	# Author:yifan
    2 	import  numpy as np
    3 	import tensorflow as tf
    4 	import parameter_config
    5 	
    6 	# 构建模型  3 Transformer模型
    7 	# 生成位置嵌入
    8 	def fixedPositionEmbedding(batchSize, sequenceLen):
    9 	    embeddedPosition = []
   10 	    for batch in range(batchSize):
   11 	        x = []
   12 	        for step in range(sequenceLen):  #类似one-hot方式的构造
   13 	            a = np.zeros(sequenceLen)
   14 	            a[step] = 1
   15 	            x.append(a)
   16 	        embeddedPosition.append(x)
   17 	    return np.array(embeddedPosition, dtype="float32")
   18 	
   19 	# 模型构建
   20 	class Transformer(object):
   21 	    """
   22 	    Transformer Encoder 用于文本分类
   23 	    """
   24 	    def __init__(self, config, wordEmbedding):
   25 	        # 定义模型的输入
   26 	        self.inputX = tf.placeholder(tf.int32, [None, config.sequenceLength], name="inputX")
   27 	        self.inputY = tf.placeholder(tf.int32, [None], name="inputY")
   28 	        self.dropoutKeepProb = tf.placeholder(tf.float32, name="dropoutKeepProb")
   29 	        self.embeddedPosition = tf.placeholder(tf.float32, [None, config.sequenceLength, config.sequenceLength], name="embeddedPosition")
   30 	        self.config = config
   31 	        # 定义l2损失
   32 	        l2Loss = tf.constant(0.0)
   33 	        
   34 	        # 词嵌入层, 位置向量的定义方式有两种:一是直接用固定的one-hot的形式传入,然后和词向量拼接,
   35 	        # 在当前的数据集上表现效果更好。另一种
   36 	        # 就是按照论文中的方法实现,这样的效果反而更差,可能是增大了模型的复杂度,在小数据集上表现不佳。
   37 	        with tf.name_scope("embedding"):
   38 	            # 利用预训练的词向量初始化词嵌入矩阵
   39 	            self.W = tf.Variable(tf.cast(wordEmbedding, dtype=tf.float32, name="word2vec") ,name="W")
   40 	            # 利用词嵌入矩阵将输入的数据中的词转换成词向量,维度[batch_size, sequence_length, embedding_size]
   41 	            self.embedded = tf.nn.embedding_lookup(self.W, self.inputX)
   42 	            self.embeddedWords = tf.concat([self.embedded, self.embeddedPosition], -1)
   43 	
   44 	        with tf.name_scope("transformer"):
   45 	            for i in range(config.model.numBlocks):
   46 	                with tf.name_scope("transformer-{}".format(i + 1)):
   47 	                    # 维度[batch_size, sequence_length, embedding_size]
   48 	                    multiHeadAtt = self._multiheadAttention(rawKeys=self.inputX, queries=self.embeddedWords,
   49 	                                                            keys=self.embeddedWords)
   50 	                    # 维度[batch_size, sequence_length, embedding_size]
   51 	                    self.embeddedWords = self._feedForward(multiHeadAtt, 
   52 	                                                           [config.model.filters, config.model.embeddingSize + config.sequenceLength])
   53 	                
   54 	            outputs = tf.reshape(self.embeddedWords, [-1, config.sequenceLength * (config.model.embeddingSize + config.sequenceLength)])
   55 	        outputSize = outputs.get_shape()[-1].value
   56 	        
   57 	        with tf.name_scope("dropout"):
   58 	            outputs = tf.nn.dropout(outputs, keep_prob=self.dropoutKeepProb)
   59 	    
   60 	        # 全连接层的输出
   61 	        with tf.name_scope("output"):
   62 	            outputW = tf.get_variable(
   63 	                "outputW",
   64 	                shape=[outputSize, config.numClasses],
   65 	                initializer=tf.contrib.layers.xavier_initializer())
   66 	            
   67 	            outputB= tf.Variable(tf.constant(0.1, shape=[config.numClasses]), name="outputB")
   68 	            l2Loss += tf.nn.l2_loss(outputW)
   69 	            l2Loss += tf.nn.l2_loss(outputB)
   70 	            self.logits = tf.nn.xw_plus_b(outputs, outputW, outputB, name="logits")
   71 	            
   72 	            if config.numClasses == 1:
   73 	                self.predictions = tf.cast(tf.greater_equal(self.logits, 0.0), tf.float32, name="predictions")
   74 	            elif config.numClasses > 1:
   75 	                self.predictions = tf.argmax(self.logits, axis=-1, name="predictions")
   76 	        
   77 	        # 计算二元交叉熵损失
   78 	        with tf.name_scope("loss"):
   79 	            
   80 	            if config.numClasses == 1:
   81 	                losses = tf.nn.sigmoid_cross_entropy_with_logits(logits=self.logits, labels=tf.cast(tf.reshape(self.inputY, [-1, 1]), 
   82 	                                                                                                    dtype=tf.float32))
   83 	            elif config.numClasses > 1:
   84 	                losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=self.logits, labels=self.inputY)
   85 	                
   86 	            self.loss = tf.reduce_mean(losses) + config.model.l2RegLambda * l2Loss
   87 	            
   88 	    def _layerNormalization(self, inputs, scope="layerNorm"):
   89 	        # LayerNorm层和BN层有所不同
   90 	        epsilon = self.config.model.epsilon
   91 	
   92 	        inputsShape = inputs.get_shape() # [batch_size, sequence_length, embedding_size]
   93 	
   94 	        paramsShape = inputsShape[-1:]
   95 	
   96 	        # LayerNorm是在最后的维度上计算输入的数据的均值和方差,BN层是考虑所有维度的
   97 	        # mean, variance的维度都是[batch_size, sequence_len, 1]
   98 	        mean, variance = tf.nn.moments(inputs, [-1], keep_dims=True)
   99 	
  100 	        beta = tf.Variable(tf.zeros(paramsShape))
  101 	
  102 	        gamma = tf.Variable(tf.ones(paramsShape))
  103 	        normalized = (inputs - mean) / ((variance + epsilon) ** .5)
  104 	        
  105 	        outputs = gamma * normalized + beta
  106 	
  107 	        return outputs
  108 	            
  109 	    def _multiheadAttention(self, rawKeys, queries, keys, numUnits=None, causality=False, scope="multiheadAttention"):
  110 	        # rawKeys 的作用是为了计算mask时用的,因为keys是加上了position embedding的,其中不存在padding为0的值
  111 	        
  112 	        numHeads = self.config.model.numHeads
  113 	        keepProp = self.config.model.keepProp
  114 	        
  115 	        if numUnits is None:  # 若是没传入值,直接去输入数据的最后一维,即embedding size.
  116 	            numUnits = queries.get_shape().as_list()[-1]
  117 	
  118 	        # tf.layers.dense可以做多维tensor数据的非线性映射,在计算self-Attention时,一定要对这三个值进行非线性映射,
  119 	        # 其实这一步就是论文中Multi-Head Attention中的对分割后的数据进行权重映射的步骤,我们在这里先映射后分割,原则上是一样的。
  120 	        # Q, K, V的维度都是[batch_size, sequence_length, embedding_size]
  121 	        Q = tf.layers.dense(queries, numUnits, activation=tf.nn.relu)
  122 	        K = tf.layers.dense(keys, numUnits, activation=tf.nn.relu)
  123 	        V = tf.layers.dense(keys, numUnits, activation=tf.nn.relu)
  124 	
  125 	        # 将数据按最后一维分割成num_heads个, 然后按照第一维拼接
  126 	        # Q, K, V 的维度都是[batch_size * numHeads, sequence_length, embedding_size/numHeads]
  127 	        Q_ = tf.concat(tf.split(Q, numHeads, axis=-1), axis=0) 
  128 	        K_ = tf.concat(tf.split(K, numHeads, axis=-1), axis=0) 
  129 	        V_ = tf.concat(tf.split(V, numHeads, axis=-1), axis=0)
  130 	
  131 	        # 计算keys和queries之间的点积,维度[batch_size * numHeads, queries_len, key_len], 后两维是queries和keys的序列长度
  132 	        similary = tf.matmul(Q_, tf.transpose(K_, [0, 2, 1]))
  133 	
  134 	        # 对计算的点积进行缩放处理,除以向量长度的根号值
  135 	        scaledSimilary = similary / (K_.get_shape().as_list()[-1] ** 0.5)
  136 	
  137 	        # 在我们输入的序列中会存在padding这个样的填充词,这种词应该对最终的结果是毫无帮助的,原则上说当padding都是输入0时,
  138 	        # 计算出来的权重应该也是0,但是在transformer中引入了位置向量,当和位置向量相加之后,其值就不为0了,因此在添加位置向量
  139 	        # 之前,我们需要将其mask为0。虽然在queries中也存在这样的填充词,但原则上模型的结果之和输入有关,而且在self-Attention中
  140 	        # queryies = keys,因此只要一方为0,计算出的权重就为0。
  141 	        # 具体关于key mask的介绍可以看看这里: https://github.com/Kyubyong/transformer/issues/3
  142 	
  143 	        # 利用tf,tile进行张量扩张, 维度[batch_size * numHeads, keys_len] keys_len = keys 的序列长度
  144 	        keyMasks = tf.tile(rawKeys, [numHeads, 1]) 
  145 	
  146 	        # 增加一个维度,并进行扩张,得到维度[batch_size * numHeads, queries_len, keys_len]
  147 	        keyMasks = tf.tile(tf.expand_dims(keyMasks, 1), [1, tf.shape(queries)[1], 1])
  148 	
  149 	        # tf.ones_like生成元素全为1,维度和scaledSimilary相同的tensor, 然后得到负无穷大的值
  150 	        paddings = tf.ones_like(scaledSimilary) * (-2 ** (32 + 1))
  151 	
  152 	        # tf.where(condition, x, y),condition中的元素为bool值,其中对应的True用x中的元素替换,对应的False用y中的元素替换
  153 	        # 因此condition,x,y的维度是一样的。下面就是keyMasks中的值为0就用paddings中的值替换
  154 	        maskedSimilary = tf.where(tf.equal(keyMasks, 0), paddings, scaledSimilary) # 维度[batch_size * numHeads, queries_len, key_len]
  155 	
  156 	        # 在计算当前的词时,只考虑上文,不考虑下文,出现在Transformer Decoder中。在文本分类时,可以只用Transformer Encoder。
  157 	        # Decoder是生成模型,主要用在语言生成中
  158 	        if causality:
  159 	            diagVals = tf.ones_like(maskedSimilary[0, :, :])  # [queries_len, keys_len]
  160 	            tril = tf.contrib.linalg.LinearOperatorTriL(diagVals).to_dense()  # [queries_len, keys_len]
  161 	            masks = tf.tile(tf.expand_dims(tril, 0), [tf.shape(maskedSimilary)[0], 1, 1])  # [batch_size * numHeads, queries_len, keys_len]
  162 	
  163 	            paddings = tf.ones_like(masks) * (-2 ** (32 + 1))
  164 	            maskedSimilary = tf.where(tf.equal(masks, 0), paddings, maskedSimilary)  # [batch_size * numHeads, queries_len, keys_len]
  165 	
  166 	        # 通过softmax计算权重系数,维度 [batch_size * numHeads, queries_len, keys_len]
  167 	        weights = tf.nn.softmax(maskedSimilary)
  168 	
  169 	        # 加权和得到输出值, 维度[batch_size * numHeads, sequence_length, embedding_size/numHeads]
  170 	        outputs = tf.matmul(weights, V_)
  171 	
  172 	        # 将多头Attention计算的得到的输出重组成最初的维度[batch_size, sequence_length, embedding_size]
  173 	        outputs = tf.concat(tf.split(outputs, numHeads, axis=0), axis=2)
  174 	        
  175 	        outputs = tf.nn.dropout(outputs, keep_prob=keepProp)
  176 	
  177 	        # 对每个subLayers建立残差连接,即H(x) = F(x) + x
  178 	        outputs += queries
  179 	        # normalization 层
  180 	        outputs = self._layerNormalization(outputs)
  181 	        return outputs
  182 	
  183 	    def _feedForward(self, inputs, filters, scope="multiheadAttention"):
  184 	        # 在这里的前向传播采用卷积神经网络
  185 	        
  186 	        # 内层
  187 	        params = {"inputs": inputs, "filters": filters[0], "kernel_size": 1,
  188 	                  "activation": tf.nn.relu, "use_bias": True}
  189 	        outputs = tf.layers.conv1d(**params)
  190 	
  191 	        # 外层
  192 	        params = {"inputs": outputs, "filters": filters[1], "kernel_size": 1,
  193 	                  "activation": None, "use_bias": True}
  194 	
  195 	        # 这里用到了一维卷积,实际上卷积核尺寸还是二维的,只是只需要指定高度,宽度和embedding size的尺寸一致
  196 	        # 维度[batch_size, sequence_length, embedding_size]
  197 	        outputs = tf.layers.conv1d(**params)
  198 	
  199 	        # 残差连接
  200 	        outputs += inputs
  201 	
  202 	        # 归一化处理
  203 	        outputs = self._layerNormalization(outputs)
  204 	
  205 	        return outputs
  206 	    
  207 	    def _positionEmbedding(self, scope="positionEmbedding"):
  208 	        # 生成可训练的位置向量
  209 	        batchSize = self.config.batchSize
  210 	        sequenceLen = self.config.sequenceLength
  211 	        embeddingSize = self.config.model.embeddingSize
  212 	        
  213 	        # 生成位置的索引,并扩张到batch中所有的样本上
  214 	        positionIndex = tf.tile(tf.expand_dims(tf.range(sequenceLen), 0), [batchSize, 1])
  215 	
  216 	        # 根据正弦和余弦函数来获得每个位置上的embedding的第一部分
  217 	        positionEmbedding = np.array([[pos / np.power(10000, (i-i%2) / embeddingSize) for i in range(embeddingSize)] 
  218 	                                      for pos in range(sequenceLen)])
  219 	
  220 	        # 然后根据奇偶性分别用sin和cos函数来包装
  221 	        positionEmbedding[:, 0::2] = np.sin(positionEmbedding[:, 0::2])
  222 	        positionEmbedding[:, 1::2] = np.cos(positionEmbedding[:, 1::2])
  223 	
  224 	        # 将positionEmbedding转换成tensor的格式
  225 	        positionEmbedding_ = tf.cast(positionEmbedding, dtype=tf.float32)
  226 	
  227 	        # 得到三维的矩阵[batchSize, sequenceLen, embeddingSize]
  228 	        positionEmbedded = tf.nn.embedding_lookup(positionEmbedding_, positionIndex)
  229 	
  230 	        return positionEmbedded

3.4 模型训练:mode_trainning.py

    1 	import os
    2 	import datetime
    3 	import numpy as np
    4 	import tensorflow as tf
    5 	import parameter_config
    6 	import get_train_data
    7 	import mode_structure
    8 	
    9 	#获取前些模块的数据
   10 	config =parameter_config.Config()
   11 	data = get_train_data.Dataset(config)
   12 	data.dataGen()
   13 	
   14 	#4生成batch数据集
   15 	def nextBatch(x, y, batchSize):
   16 	    # 生成batch数据集,用生成器的方式输出
   17 	    perm = np.arange(len(x))  #返回[0  1  2  ... len(x)]的数组
   18 	    np.random.shuffle(perm)  #乱序
   19 	    x = x[perm]
   20 	    y = y[perm]
   21 	    numBatches = len(x) // batchSize
   22 	    for i in range(numBatches):
   23 	        start = i * batchSize
   24 	        end = start + batchSize
   25 	        batchX = np.array(x[start: end], dtype="int64")
   26 	        batchY = np.array(y[start: end], dtype="float32")
   27 	        yield batchX, batchY
   28 	
   29 	# 5 定义计算metrics的函数
   30 	"""
   31 	定义各类性能指标
   32 	"""
   33 	def mean(item: list) -> float:
   34 	    """
   35 	    计算列表中元素的平均值
   36 	    :param item: 列表对象
   37 	    :return:
   38 	    """
   39 	    res = sum(item) / len(item) if len(item) > 0 else 0
   40 	    return res
   41 	
   42 	def accuracy(pred_y, true_y):
   43 	    """
   44 	    计算二类和多类的准确率
   45 	    :param pred_y: 预测结果
   46 	    :param true_y: 真实结果
   47 	    :return:
   48 	    """
   49 	    if isinstance(pred_y[0], list):
   50 	        pred_y = [item[0] for item in pred_y]
   51 	    corr = 0
   52 	    for i in range(len(pred_y)):
   53 	        if pred_y[i] == true_y[i]:
   54 	            corr += 1
   55 	    acc = corr / len(pred_y) if len(pred_y) > 0 else 0
   56 	    return acc
   57 	
   58 	def binary_precision(pred_y, true_y, positive=1):
   59 	    """
   60 	    二类的精确率计算
   61 	    :param pred_y: 预测结果
   62 	    :param true_y: 真实结果
   63 	    :param positive: 正例的索引表示
   64 	    :return:
   65 	    """
   66 	    corr = 0
   67 	    pred_corr = 0
   68 	    for i in range(len(pred_y)):
   69 	        if pred_y[i] == positive:
   70 	            pred_corr += 1
   71 	            if pred_y[i] == true_y[i]:
   72 	                corr += 1
   73 	
   74 	    prec = corr / pred_corr if pred_corr > 0 else 0
   75 	    return prec
   76 	
   77 	def binary_recall(pred_y, true_y, positive=1):
   78 	    """
   79 	    二类的召回率
   80 	    :param pred_y: 预测结果
   81 	    :param true_y: 真实结果
   82 	    :param positive: 正例的索引表示
   83 	    :return:
   84 	    """
   85 	    corr = 0
   86 	    true_corr = 0
   87 	    for i in range(len(pred_y)):
   88 	        if true_y[i] == positive:
   89 	            true_corr += 1
   90 	            if pred_y[i] == true_y[i]:
   91 	                corr += 1
   92 	
   93 	    rec = corr / true_corr if true_corr > 0 else 0
   94 	    return rec
   95 	
   96 	def binary_f_beta(pred_y, true_y, beta=1.0, positive=1):
   97 	    """
   98 	    二类的f beta值
   99 	    :param pred_y: 预测结果
  100 	    :param true_y: 真实结果
  101 	    :param beta: beta值
  102 	    :param positive: 正例的索引表示
  103 	    :return:
  104 	    """
  105 	    precision = binary_precision(pred_y, true_y, positive)
  106 	    recall = binary_recall(pred_y, true_y, positive)
  107 	    try:
  108 	        f_b = (1 + beta * beta) * precision * recall / (beta * beta * precision + recall)
  109 	    except:
  110 	        f_b = 0
  111 	    return f_b
  112 	
  113 	def multi_precision(pred_y, true_y, labels):
  114 	    """
  115 	    多类的精确率
  116 	    :param pred_y: 预测结果
  117 	    :param true_y: 真实结果
  118 	    :param labels: 标签列表
  119 	    :return:
  120 	    """
  121 	    if isinstance(pred_y[0], list):
  122 	        pred_y = [item[0] for item in pred_y]
  123 	
  124 	    precisions = [binary_precision(pred_y, true_y, label) for label in labels]
  125 	    prec = mean(precisions)
  126 	    return prec
  127 	
  128 	def multi_recall(pred_y, true_y, labels):
  129 	    """
  130 	    多类的召回率
  131 	    :param pred_y: 预测结果
  132 	    :param true_y: 真实结果
  133 	    :param labels: 标签列表
  134 	    :return:
  135 	    """
  136 	    if isinstance(pred_y[0], list):
  137 	        pred_y = [item[0] for item in pred_y]
  138 	
  139 	    recalls = [binary_recall(pred_y, true_y, label) for label in labels]
  140 	    rec = mean(recalls)
  141 	    return rec
  142 	
  143 	def multi_f_beta(pred_y, true_y, labels, beta=1.0):
  144 	    """
  145 	    多类的f beta值
  146 	    :param pred_y: 预测结果
  147 	    :param true_y: 真实结果
  148 	    :param labels: 标签列表
  149 	    :param beta: beta值
  150 	    :return:
  151 	    """
  152 	    if isinstance(pred_y[0], list):
  153 	        pred_y = [item[0] for item in pred_y]
  154 	
  155 	    f_betas = [binary_f_beta(pred_y, true_y, beta, label) for label in labels]
  156 	    f_beta = mean(f_betas)
  157 	    return f_beta
  158 	
  159 	def get_binary_metrics(pred_y, true_y, f_beta=1.0):
  160 	    """
  161 	    得到二分类的性能指标
  162 	    :param pred_y:
  163 	    :param true_y:
  164 	    :param f_beta:
  165 	    :return:
  166 	    """
  167 	    acc = accuracy(pred_y, true_y)
  168 	    recall = binary_recall(pred_y, true_y)
  169 	    precision = binary_precision(pred_y, true_y)
  170 	    f_beta = binary_f_beta(pred_y, true_y, f_beta)
  171 	    return acc, recall, precision, f_beta
  172 	
  173 	def get_multi_metrics(pred_y, true_y, labels, f_beta=1.0):
  174 	    """
  175 	    得到多分类的性能指标
  176 	    :param pred_y:
  177 	    :param true_y:
  178 	    :param labels:
  179 	    :param f_beta:
  180 	    :return:
  181 	    """
  182 	    acc = accuracy(pred_y, true_y)
  183 	    recall = multi_recall(pred_y, true_y, labels)
  184 	    precision = multi_precision(pred_y, true_y, labels)
  185 	    f_beta = multi_f_beta(pred_y, true_y, labels, f_beta)
  186 	    return acc, recall, precision, f_beta
  187 	
  188 	# 6 训练模型
  189 	# 生成训练集和验证集
  190 	trainReviews = data.trainReviews
  191 	trainLabels = data.trainLabels
  192 	evalReviews = data.evalReviews
  193 	evalLabels = data.evalLabels
  194 	
  195 	wordEmbedding = data.wordEmbedding
  196 	labelList = data.labelList
  197 	embeddedPosition = mode_structure.fixedPositionEmbedding(config.batchSize, config.sequenceLength) #使用的是one-hot形式
  198 	
  199 	# 训练模型
  200 	# 定义计算图
  201 	with tf.Graph().as_default():
  202 	    session_conf = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)
  203 	    session_conf.gpu_options.allow_growth=True
  204 	    session_conf.gpu_options.per_process_gpu_memory_fraction = 0.9  # 配置gpu占用率
  205 	    sess = tf.Session(config=session_conf)
  206 	    
  207 	    # 定义会话
  208 	    with sess.as_default():
  209 	        transformer = mode_structure.Transformer(config, wordEmbedding)
  210 	        globalStep = tf.Variable(0, name="globalStep", trainable=False)
  211 	        # 定义优化函数,传入学习速率参数
  212 	        optimizer = tf.train.AdamOptimizer(config.training.learningRate)
  213 	        # 计算梯度,得到梯度和变量
  214 	        gradsAndVars = optimizer.compute_gradients(transformer.loss)
  215 	        # 将梯度应用到变量下,生成训练器
  216 	        trainOp = optimizer.apply_gradients(gradsAndVars, global_step=globalStep)
  217 	        
  218 	        # 用summary绘制tensorBoard
  219 	        gradSummaries = []
  220 	        for g, v in gradsAndVars:
  221 	            if g is not None:
  222 	                tf.summary.histogram("{}/grad/hist".format(v.name), g)
  223 	                tf.summary.scalar("{}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g))
  224 	        
  225 	        outDir = os.path.abspath(os.path.join(os.path.curdir, "summarys"))
  226 	        print("Writing to {}\n".format(outDir))
  227 	        
  228 	        lossSummary = tf.summary.scalar("loss", transformer.loss)
  229 	        summaryOp = tf.summary.merge_all()
  230 	        
  231 	        trainSummaryDir = os.path.join(outDir, "train")
  232 	        trainSummaryWriter = tf.summary.FileWriter(trainSummaryDir, sess.graph)
  233 	        evalSummaryDir = os.path.join(outDir, "eval")
  234 	        evalSummaryWriter = tf.summary.FileWriter(evalSummaryDir, sess.graph)
  235 	        
  236 	        
  237 	        # 初始化所有变量
  238 	        saver = tf.train.Saver(tf.global_variables(), max_to_keep=5)
  239 	        
  240 	        # 保存模型的一种方式,保存为pb文件
  241 	        savedModelPath = "../model/transformer/savedModel"
  242 	        if os.path.exists(savedModelPath):
  243 	            os.rmdir(savedModelPath)
  244 	        builder = tf.saved_model.builder.SavedModelBuilder(savedModelPath)
  245 	            
  246 	        sess.run(tf.global_variables_initializer())
  247 	
  248 	        def trainStep(batchX, batchY):
  249 	            """
  250 	            训练函数
  251 	            """   
  252 	            feed_dict = {
  253 	              transformer.inputX: batchX,
  254 	              transformer.inputY: batchY,
  255 	              transformer.dropoutKeepProb: config.model.dropoutKeepProb,
  256 	              transformer.embeddedPosition: embeddedPosition
  257 	            }
  258 	            _, summary, step, loss, predictions = sess.run(
  259 	                [trainOp, summaryOp, globalStep, transformer.loss, transformer.predictions],
  260 	                feed_dict)
  261 	            
  262 	            if config.numClasses == 1:
  263 	                acc, recall, prec, f_beta = get_binary_metrics(pred_y=predictions, true_y=batchY)
  264 	            elif config.numClasses > 1:
  265 	                acc, recall, prec, f_beta = get_multi_metrics(pred_y=predictions, true_y=batchY,
  266 	                                                              labels=labelList)
  267 	                
  268 	            trainSummaryWriter.add_summary(summary, step)
  269 	            return loss, acc, prec, recall, f_beta
  270 	
  271 	        def devStep(batchX, batchY):
  272 	            """
  273 	            验证函数
  274 	            """
  275 	            feed_dict = {
  276 	              transformer.inputX: batchX,
  277 	              transformer.inputY: batchY,
  278 	              transformer.dropoutKeepProb: 1.0,
  279 	              transformer.embeddedPosition: embeddedPosition
  280 	            }
  281 	            summary, step, loss, predictions = sess.run(
  282 	                [summaryOp, globalStep, transformer.loss, transformer.predictions],
  283 	                feed_dict)
  284 	            
  285 	            if config.numClasses == 1:
  286 	                acc, recall, prec, f_beta = get_binary_metrics(pred_y=predictions, true_y=batchY)
  287 	
  288 	                
  289 	            elif config.numClasses > 1:
  290 	                acc, recall, prec, f_beta = get_multi_metrics(pred_y=predictions, true_y=batchY,
  291 	                                                              labels=labelList)
  292 	                
  293 	            trainSummaryWriter.add_summary(summary, step)
  294 	            
  295 	            return loss, acc, prec, recall, f_beta
  296 	        
  297 	        for i in range(config.training.epoches):
  298 	            # 训练模型
  299 	            print("start training model")
  300 	            for batchTrain in nextBatch(trainReviews, trainLabels, config.batchSize):
  301 	                loss, acc, prec, recall, f_beta = trainStep(batchTrain[0], batchTrain[1])
  302 	                
  303 	                currentStep = tf.train.global_step(sess, globalStep) 
  304 	                print("train: step: {}, loss: {}, acc: {}, recall: {}, precision: {}, f_beta: {}".format(
  305 	                    currentStep, loss, acc, recall, prec, f_beta))
  306 	                if currentStep % config.training.evaluateEvery == 0:
  307 	                    print("\nEvaluation:")
  308 	                    
  309 	                    losses = []
  310 	                    accs = []
  311 	                    f_betas = []
  312 	                    precisions = []
  313 	                    recalls = []
  314 	                    
  315 	                    for batchEval in nextBatch(evalReviews, evalLabels, config.batchSize):
  316 	                        loss, acc, precision, recall, f_beta = devStep(batchEval[0], batchEval[1])
  317 	                        losses.append(loss)
  318 	                        accs.append(acc)
  319 	                        f_betas.append(f_beta)
  320 	                        precisions.append(precision)
  321 	                        recalls.append(recall)
  322 	                        
  323 	                    time_str = datetime.datetime.now().isoformat()
  324 	                    print("{}, step: {}, loss: {}, acc: {},precision: {}, recall: {}, f_beta: {}".format(time_str, currentStep, mean(losses), 
  325 	                                                                                                       mean(accs), mean(precisions),
  326 	                                                                                                       mean(recalls), mean(f_betas)))
  327 	                    
  328 	                if currentStep % config.training.checkpointEvery == 0:
  329 	                    # 保存模型的另一种方法,保存checkpoint文件
  330 	                    path = saver.save(sess, "../model/Transformer/model/my-model", global_step=currentStep)
  331 	                    print("Saved model checkpoint to {}\n".format(path))
  332 	                    
  333 	        inputs = {"inputX": tf.saved_model.utils.build_tensor_info(transformer.inputX),
  334 	                  "keepProb": tf.saved_model.utils.build_tensor_info(transformer.dropoutKeepProb)}
  335 	
  336 	        outputs = {"predictions": tf.saved_model.utils.build_tensor_info(transformer.predictions)}
  337 	
  338 	        prediction_signature = tf.saved_model.signature_def_utils.build_signature_def(inputs=inputs, outputs=outputs,
  339 	                                                                                      method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME)
  340 	        legacy_init_op = tf.group(tf.tables_initializer(), name="legacy_init_op")
  341 	        builder.add_meta_graph_and_variables(sess, [tf.saved_model.tag_constants.SERVING],
  342 	                                            signature_def_map={"predict": prediction_signature}, legacy_init_op=legacy_init_op)
  343 	
  344 	        builder.save()

3.5 预测:predict.py

    1 	# Author:yifan
    2 	import os
    3 	import csv
    4 	import time
    5 	import datetime
    6 	import random
    7 	import json
    8 	from collections import Counter
    9 	from math import sqrt
   10 	import gensim
   11 	import pandas as pd
   12 	import numpy as np
   13 	import tensorflow as tf
   14 	from sklearn.metrics import roc_auc_score, accuracy_score, precision_score, recall_score
   15 	import parameter_config
   16 	config =parameter_config.Config()
   17 	import mode_structure
   18 	embeddedPositions = mode_structure.fixedPositionEmbedding(config.batchSize, config.sequenceLength)[0] #使用的是one-hot形式
   19 	# print(type(embeddedPositions))
   20 	# print(embeddedPositions.shape)
   21 	#7预测代码
   22 	# x = "this movie is full of references like mad max ii the wild one and many others the ladybug´s face it´s a clear reference or tribute to peter lorre this movie is a masterpiece we´ll talk much more about in the future"
   23 	# x = "his movie is the same as the third level movie. There's no place to look good"
   24 	x = "This film is not good"   #最终反馈为1  感觉不准
   25 	# x = "This film is   bad"   #最终反馈为0
   26 	
   27 	# 注:下面两个词典要保证和当前加载的模型对应的词典是一致的
   28 	with open("../data/wordJson/word2idx.json", "r", encoding="utf-8") as f:
   29 	    word2idx = json.load(f)
   30 	with open("../data/wordJson/label2idx.json", "r", encoding="utf-8") as f:   #label2idx.json内容{"0": 0, "1": 1}
   31 	    label2idx = json.load(f)
   32 	idx2label = {value: key for key, value in label2idx.items()}
   33 	
   34 	#x 的处理,变成模型能识别的向量xIds
   35 	xIds = [word2idx.get(item, word2idx["UNK"]) for item in x.split(" ")]  #返回x对应的向量
   36 	if len(xIds) >= config.sequenceLength:   #xIds 句子单词个数是否超过了sequenceLength(200)
   37 	    xIds = xIds[:config.sequenceLength]
   38 	    print("ddd",xIds)
   39 	else:
   40 	    xIds = xIds + [word2idx["PAD"]] * (config.sequenceLength - len(xIds))
   41 	    print("xxx", xIds)
   42 	
   43 	graph = tf.Graph()
   44 	with graph.as_default():
   45 	    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333)
   46 	    session_conf = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False, gpu_options=gpu_options)
   47 	    sess = tf.Session(config=session_conf)
   48 	
   49 	    with sess.as_default():
   50 	        # 恢复模型
   51 	        checkpoint_file = tf.train.latest_checkpoint("../model/transformer/model/")
   52 	        saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file))
   53 	        saver.restore(sess, checkpoint_file)
   54 	
   55 	        # 获得需要喂给模型的参数,输出的结果依赖的输入值
   56 	        inputX = graph.get_operation_by_name("inputX").outputs[0]
   57 	        dropoutKeepProb = graph.get_operation_by_name("dropoutKeepProb").outputs[0]
   58 	        embeddedPosition = graph.get_operation_by_name("embeddedPosition").outputs[0]
   59 	        # inputX = tf.placeholder(tf.int32, [None, config.sequenceLength], name="inputX")
   60 	        # dropoutKeepProb = tf.placeholder(tf.float32, name="dropoutKeepProb")
   61 	        # embeddedPosition = tf.placeholder(tf.float32, [None, config.sequenceLength, config.sequenceLength],
   62 	        #                                        name="embeddedPosition")   #这种方式不行
   63 	
   64 	        # 获得输出的结果
   65 	        predictions = graph.get_tensor_by_name("output/predictions:0")
   66 	        pred = sess.run(predictions, feed_dict={inputX: [xIds], dropoutKeepProb: 1.0, embeddedPosition: [embeddedPositions]})[0]
   67 	
   68 	# print(pred)
   69 	pred = [idx2label[item] for item in pred]
   70 	print(pred)

结果

相关代码可见:https://github.com/yifanhunter/NLP_textClassifier

主要参考:

【1】 https://home.cnblogs.com/u/jiangxinyang/

posted @ 2020-07-22 22:02  忆凡人生  阅读(1118)  评论(0编辑  收藏  举报