【文本分类-05】BiLSTM+Attention

目录

  1. 大纲概述
  2. 数据集合
  3. 数据处理
  4. 预训练word2vec模型

一、大纲概述

文本分类这个系列将会有8篇左右文章,从github直接下载代码,从百度云下载训练数据,在pycharm上导入即可使用,包括基于word2vec预训练的文本分类,与及基于近几年的预训练模型(ELMo,BERT等)的文本分类。总共有以下系列:

word2vec预训练词向量

textCNN 模型

charCNN 模型

Bi-LSTM 模型

Bi-LSTM + Attention 模型

Transformer 模型

ELMo 预训练模型

BERT 预训练模型

模型结构

Bi-LSTM + Attention模型来源于论文Attention-Based Bidirectional Long Short-Term Memory Networks for Relation Classification

Bi-LSTM + Attention 就是在Bi-LSTM的模型上加入Attention层,在Bi-LSTM中我们会用最后一个时序 的输出向量 作为特征向量,然后进行softmax分类。Attention是先计算每个时序的权重,然后将所有时序 的向量进行加权和作为特征向量,然后进行softmax分类。在实验中,加上Attention确实对结果有所提升。其模型结构如下图:

二、数据集合

数据集为IMDB 电影影评,总共有三个数据文件,在/data/rawData目录下,包括unlabeledTrainData.tsv,labeledTrainData.tsv,testData.tsv。在进行文本分类时需要有标签的数据(labeledTrainData),但是在训练word2vec词向量模型(无监督学习)时可以将无标签的数据一起用上。

训练数据地址:链接:https://pan.baidu.com/s/1-XEwx1ai8kkGsMagIFKX_g 提取码:rtz8

三、主要代码 

3.1 配置训练参数:parameter_config.py

# Author:yifan
#需要的所有导入包,存放留用,转换到jupyter后直接使用
# 1 配置训练参数
class TrainingConfig(object):
    epoches = 4
    evaluateEvery = 100
    checkpointEvery = 100
    learningRate = 0.001
    
class ModelConfig(object):
    embeddingSize = 200
    hiddenSizes = [256, 128]  # LSTM结构的神经元个数
    dropoutKeepProb = 0.5
    l2RegLambda = 0.0
    
class Config(object):
    sequenceLength = 200  # 取了所有序列长度的均值
    batchSize = 128
    dataSource = "../data/preProcess/labeledTrain.csv"
    stopWordSource = "../data/english"
    numClasses = 1  # 二分类设置为1,多分类设置为类别的数目
    rate = 0.8  # 训练集的比例
    training = TrainingConfig()
    model = ModelConfig()
    
# 实例化配置参数对象
config = Config()

3.2 获取训练数据:get_train_data.py

# Author:yifan
import json
from collections import Counter
import gensim
import pandas as pd
import numpy as np
import parameter_config
# 2 数据预处理的类,生成训练集和测试集
class Dataset(object):
    def __init__(self, config):
        self.config = config
        self._dataSource = config.dataSource
        self._stopWordSource = config.stopWordSource
        self._sequenceLength = config.sequenceLength  # 每条输入的序列处理为定长
        self._embeddingSize = config.model.embeddingSize
        self._batchSize = config.batchSize
        self._rate = config.rate
        self._stopWordDict = {}
        self.trainReviews = []
        self.trainLabels = []
        self.evalReviews = []
        self.evalLabels = []
        self.wordEmbedding = None
        self.labelList = []
    def _readData(self, filePath):
        """
        从csv文件中读取数据集,就本次测试的文件做记录
        """
        df = pd.read_csv(filePath)  #读取文件,是三列的数据,第一列是review,第二列sentiment,第三列rate
        if self.config.numClasses == 1:
            labels = df["sentiment"].tolist()  #读取sentiment列的数据,  显示输出01序列数组25000条
        elif self.config.numClasses > 1:
            labels = df["rate"].tolist()   #因为numClasses控制,本次取样没有取超过二分类  该处没有输出
        review = df["review"].tolist()
        reviews = [line.strip().split() for line in review]  #按空格语句切分
        return reviews, labels
    def _labelToIndex(self, labels, label2idx):
        """
        将标签转换成索引表示
        """
        labelIds = [label2idx[label] for label in labels]   #print(labels==labelIds) 结果显示为true,也就是两个一样
        return labelIds
    def _wordToIndex(self, reviews, word2idx):
        """将词转换成索引"""
        reviewIds = [[word2idx.get(item, word2idx["UNK"]) for item in review] for review in reviews]
        # print(max(max(reviewIds)))
        # print(reviewIds)
        return reviewIds  #返回25000个无序的数组
    def _genTrainEvalData(self, x, y, word2idx, rate):
        """生成训练集和验证集 """
        reviews = []
        # print(self._sequenceLength)
        # print(len(x))
        for review in x:   #self._sequenceLength为200,表示长的切成200,短的补齐,x数据依旧是25000
            if len(review) >= self._sequenceLength:
                reviews.append(review[:self._sequenceLength])
            else:
                reviews.append(review + [word2idx["PAD"]] * (self._sequenceLength - len(review)))
                # print(len(review + [word2idx["PAD"]] * (self._sequenceLength - len(review))))
        #以下是按照rate比例切分训练和测试数据:
        trainIndex = int(len(x) * rate)
        trainReviews = np.asarray(reviews[:trainIndex], dtype="int64")
        trainLabels = np.array(y[:trainIndex], dtype="float32")
        evalReviews = np.asarray(reviews[trainIndex:], dtype="int64")
        evalLabels = np.array(y[trainIndex:], dtype="float32")
        return trainReviews, trainLabels, evalReviews, evalLabels

    def _getWordEmbedding(self, words):
        """按照我们的数据集中的单词取出预训练好的word2vec中的词向量
        反馈词和对应的向量(200维度),另外前面增加PAD对用0的数组,UNK对应随机数组。
        """
        wordVec = gensim.models.KeyedVectors.load_word2vec_format("../word2vec/word2Vec.bin", binary=True)
        vocab = []
        wordEmbedding = []
        # 添加 "pad" 和 "UNK",
        vocab.append("PAD")
        vocab.append("UNK")
        wordEmbedding.append(np.zeros(self._embeddingSize))  # _embeddingSize 本文定义的是200
        wordEmbedding.append(np.random.randn(self._embeddingSize))
        # print(wordEmbedding)
        for word in words:
            try:
                vector = wordVec.wv[word]
                vocab.append(word)
                wordEmbedding.append(vector)
            except:
                print(word + "不存在于词向量中")
        # print(vocab[:3],wordEmbedding[:3])
        return vocab, np.array(wordEmbedding)
    def _genVocabulary(self, reviews, labels):
        """生成词向量和词汇-索引映射字典,可以用全数据集"""
        allWords = [word for review in reviews for word in review]   #单词数量5738236   reviews是25000个观点句子【】
        subWords = [word for word in allWords if word not in self.stopWordDict]   # 去掉停用词
        wordCount = Counter(subWords)  # 统计词频
        sortWordCount = sorted(wordCount.items(), key=lambda x: x[1], reverse=True) #返回键值对,并按照数量排序
        # print(len(sortWordCount))  #161330
        # print(sortWordCount[:4],sortWordCount[-4:]) # [('movie', 41104), ('film', 36981), ('one', 24966), ('like', 19490)] [('daeseleires', 1), ('nice310', 1), ('shortsightedness', 1), ('unfairness', 1)]
        words = [item[0] for item in sortWordCount if item[1] >= 5]   # 去除低频词,低于5的
        vocab, wordEmbedding = self._getWordEmbedding(words)
        self.wordEmbedding = wordEmbedding
        word2idx = dict(zip(vocab, list(range(len(vocab)))))   #生成类似这种{'I': 0, 'love': 1, 'yanzi': 2}
        uniqueLabel = list(set(labels))    #标签去重  最后就 0  1了
        label2idx = dict(zip(uniqueLabel, list(range(len(uniqueLabel))))) #本文就 {0: 0, 1: 1}
        self.labelList = list(range(len(uniqueLabel)))
        # 将词汇-索引映射表保存为json数据,之后做inference时直接加载来处理数据
        with open("../data/wordJson/word2idx.json", "w", encoding="utf-8") as f:
            json.dump(word2idx, f)
        with open("../data/wordJson/label2idx.json", "w", encoding="utf-8") as f:
            json.dump(label2idx, f)
        return word2idx, label2idx

    def _readStopWord(self, stopWordPath):
        """
        读取停用词
        """
        with open(stopWordPath, "r") as f:
            stopWords = f.read()
            stopWordList = stopWords.splitlines()
            # 将停用词用列表的形式生成,之后查找停用词时会比较快
            self.stopWordDict = dict(zip(stopWordList, list(range(len(stopWordList)))))

    def dataGen(self):
        """
        初始化训练集和验证集
        """
        # 初始化停用词
        self._readStopWord(self._stopWordSource)
        # 初始化数据集
        reviews, labels = self._readData(self._dataSource)
        # 初始化词汇-索引映射表和词向量矩阵
        word2idx, label2idx = self._genVocabulary(reviews, labels)
        # 将标签和句子数值化
        labelIds = self._labelToIndex(labels, label2idx)
        reviewIds = self._wordToIndex(reviews, word2idx)
        # 初始化训练集和测试集
        trainReviews, trainLabels, evalReviews, evalLabels = self._genTrainEvalData(reviewIds, labelIds, word2idx,
                                                                                    self._rate)
        self.trainReviews = trainReviews
        self.trainLabels = trainLabels

        self.evalReviews = evalReviews
        self.evalLabels = evalLabels

#获取前些模块的数据
# config =parameter_config.Config()
# data = Dataset(config)
# data.dataGen()

3.3 模型构建:mode_structure.py

import tensorflow as tf
import parameter_config
config = parameter_config.Config()
# 构建模型  3 Bi-LSTM + Attention模型
# 构建模型
class BiLSTMAttention(object):
    def __init__(self, config, wordEmbedding):
        # 定义模型的输入
        self.inputX = tf.placeholder(tf.int32, [None, config.sequenceLength], name="inputX")
        self.inputY = tf.placeholder(tf.int32, [None], name="inputY") 
        self.dropoutKeepProb = tf.placeholder(tf.float32, name="dropoutKeepProb")
        # 定义l2损失
        l2Loss = tf.constant(0.0)
        
        # 词嵌入层
        with tf.name_scope("embedding"):
            # 利用预训练的词向量初始化词嵌入矩阵
            self.W = tf.Variable(tf.cast(wordEmbedding, dtype=tf.float32, name="word2vec") ,name="W")
            # 利用词嵌入矩阵将输入的数据中的词转换成词向量,维度[batch_size, sequence_length, embedding_size]
            self.embeddedWords = tf.nn.embedding_lookup(self.W, self.inputX)
            
        # 定义两层双向LSTM的模型结构
        with tf.name_scope("Bi-LSTM"):
            for idx, hiddenSize in enumerate(config.model.hiddenSizes):
                with tf.name_scope("Bi-LSTM" + str(idx)):
                    # 定义前向LSTM结构
                    lstmFwCell = tf.nn.rnn_cell.DropoutWrapper(tf.nn.rnn_cell.LSTMCell(num_units=hiddenSize, state_is_tuple=True),
                                                                 output_keep_prob=self.dropoutKeepProb)
                    # 定义反向LSTM结构
                    lstmBwCell = tf.nn.rnn_cell.DropoutWrapper(tf.nn.rnn_cell.LSTMCell(num_units=hiddenSize, state_is_tuple=True),
                                                                 output_keep_prob=self.dropoutKeepProb)


                    # 采用动态rnn,可以动态的输入序列的长度,若没有输入,则取序列的全长
                    # outputs是一个元祖(output_fw, output_bw),其中两个元素的维度都是[batch_size, max_time, hidden_size],fw和bw的hidden_size一样
                    # self.current_state 是最终的状态,二元组(state_fw, state_bw),state_fw=[batch_size, s],s是一个元祖(h, c)
                    outputs_, self.current_state = tf.nn.bidirectional_dynamic_rnn(lstmFwCell, lstmBwCell, 
                                                                                  self.embeddedWords, dtype=tf.float32,
                                                                                  scope="bi-lstm" + str(idx))
        
                    # 对outputs中的fw和bw的结果拼接 [batch_size, time_step, hidden_size * 2], 传入到下一层Bi-LSTM中
                    self.embeddedWords = tf.concat(outputs_, 2)
                
        # 将最后一层Bi-LSTM输出的结果分割成前向和后向的输出
        outputs = tf.split(self.embeddedWords, 2, -1)
        
        # 在Bi-LSTM+Attention的论文中,将前向和后向的输出相加
        with tf.name_scope("Attention"):
            H = outputs[0] + outputs[1]

            # 得到Attention的输出
            output = self.attention(H)
            outputSize = config.model.hiddenSizes[-1]
        
        # 全连接层的输出
        with tf.name_scope("output"):
            outputW = tf.get_variable(
                "outputW",
                shape=[outputSize, config.numClasses],
                initializer=tf.contrib.layers.xavier_initializer())
            
            outputB= tf.Variable(tf.constant(0.1, shape=[config.numClasses]), name="outputB")
            l2Loss += tf.nn.l2_loss(outputW)
            l2Loss += tf.nn.l2_loss(outputB)
            self.logits = tf.nn.xw_plus_b(output, outputW, outputB, name="logits")
            
            if config.numClasses == 1:
                self.predictions = tf.cast(tf.greater_equal(self.logits, 0.0), tf.float32, name="predictions")
            elif config.numClasses > 1:
                self.predictions = tf.argmax(self.logits, axis=-1, name="predictions")
        
        # 计算二元交叉熵损失
        with tf.name_scope("loss"):
            
            if config.numClasses == 1:
                losses = tf.nn.sigmoid_cross_entropy_with_logits(logits=self.logits, labels=tf.cast(tf.reshape(self.inputY, [-1, 1]), 
                                                                                                    dtype=tf.float32))
            elif config.numClasses > 1:
                losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=self.logits, labels=self.inputY)
                
            self.loss = tf.reduce_mean(losses) + config.model.l2RegLambda * l2Loss
    
    def attention(self, H):
        """
        利用Attention机制得到句子的向量表示
        """
        # 获得最后一层LSTM的神经元数量
        hiddenSize = config.model.hiddenSizes[-1]
        
        # 初始化一个权重向量,是可训练的参数
        W = tf.Variable(tf.random_normal([hiddenSize], stddev=0.1))
        
        # 对Bi-LSTM的输出用激活函数做非线性转换
        M = tf.tanh(H)
        
        # 对W和M做矩阵运算,W=[batch_size, time_step, hidden_size],计算前做维度转换成[batch_size * time_step, hidden_size]
        # newM = [batch_size, time_step, 1],每一个时间步的输出由向量转换成一个数字
        newM = tf.matmul(tf.reshape(M, [-1, hiddenSize]), tf.reshape(W, [-1, 1]))
        
        # 对newM做维度转换成[batch_size, time_step]
        restoreM = tf.reshape(newM, [-1, config.sequenceLength])
        
        # 用softmax做归一化处理[batch_size, time_step]
        self.alpha = tf.nn.softmax(restoreM)
        
        # 利用求得的alpha的值对H进行加权求和,用矩阵运算直接操作
        r = tf.matmul(tf.transpose(H, [0, 2, 1]), tf.reshape(self.alpha, [-1, config.sequenceLength, 1]))
        
        # 将三维压缩成二维sequeezeR=[batch_size, hidden_size]
        sequeezeR = tf.reshape(r, [-1, hiddenSize])
        
        sentenceRepren = tf.tanh(sequeezeR)
        
        # 对Attention的输出可以做dropout处理
        output = tf.nn.dropout(sentenceRepren, self.dropoutKeepProb)
        
        return output

3.4 模型训练:mode_trainning.py

    1 	import os
    2 	import datetime
    3 	import numpy as np
    4 	import tensorflow as tf
    5 	import parameter_config
    6 	import get_train_data
    7 	import mode_structure
    8 	
    9 	#获取前些模块的数据
   10 	config =parameter_config.Config()
   11 	data = get_train_data.Dataset(config)
   12 	data.dataGen()
   13 	
   14 	#4生成batch数据集
   15 	def nextBatch(x, y, batchSize):
   16 	    # 生成batch数据集,用生成器的方式输出
   17 	    perm = np.arange(len(x))  #返回[0  1  2  ... len(x)]的数组
   18 	    np.random.shuffle(perm)  #乱序
   19 	    x = x[perm]
   20 	    y = y[perm]
   21 	    numBatches = len(x) // batchSize
   22 	
   23 	    for i in range(numBatches):
   24 	        start = i * batchSize
   25 	        end = start + batchSize
   26 	        batchX = np.array(x[start: end], dtype="int64")
   27 	        batchY = np.array(y[start: end], dtype="float32")
   28 	        yield batchX, batchY
   29 	
   30 	# 5 定义计算metrics的函数
   31 	"""
   32 	定义各类性能指标
   33 	"""
   34 	def mean(item: list) -> float:
   35 	    """
   36 	    计算列表中元素的平均值
   37 	    :param item: 列表对象
   38 	    :return:
   39 	    """
   40 	    res = sum(item) / len(item) if len(item) > 0 else 0
   41 	    return res
   42 	
   43 	def accuracy(pred_y, true_y):
   44 	    """
   45 	    计算二类和多类的准确率
   46 	    :param pred_y: 预测结果
   47 	    :param true_y: 真实结果
   48 	    :return:
   49 	    """
   50 	    if isinstance(pred_y[0], list):
   51 	        pred_y = [item[0] for item in pred_y]
   52 	    corr = 0
   53 	    for i in range(len(pred_y)):
   54 	        if pred_y[i] == true_y[i]:
   55 	            corr += 1
   56 	    acc = corr / len(pred_y) if len(pred_y) > 0 else 0
   57 	    return acc
   58 	
   59 	def binary_precision(pred_y, true_y, positive=1):
   60 	    """
   61 	    二类的精确率计算
   62 	    :param pred_y: 预测结果
   63 	    :param true_y: 真实结果
   64 	    :param positive: 正例的索引表示
   65 	    :return:
   66 	    """
   67 	    corr = 0
   68 	    pred_corr = 0
   69 	    for i in range(len(pred_y)):
   70 	        if pred_y[i] == positive:
   71 	            pred_corr += 1
   72 	            if pred_y[i] == true_y[i]:
   73 	                corr += 1
   74 	
   75 	    prec = corr / pred_corr if pred_corr > 0 else 0
   76 	    return prec
   77 	
   78 	def binary_recall(pred_y, true_y, positive=1):
   79 	    """
   80 	    二类的召回率
   81 	    :param pred_y: 预测结果
   82 	    :param true_y: 真实结果
   83 	    :param positive: 正例的索引表示
   84 	    :return:
   85 	    """
   86 	    corr = 0
   87 	    true_corr = 0
   88 	    for i in range(len(pred_y)):
   89 	        if true_y[i] == positive:
   90 	            true_corr += 1
   91 	            if pred_y[i] == true_y[i]:
   92 	                corr += 1
   93 	
   94 	    rec = corr / true_corr if true_corr > 0 else 0
   95 	    return rec
   96 	
   97 	def binary_f_beta(pred_y, true_y, beta=1.0, positive=1):
   98 	    """
   99 	    二类的f beta值
  100 	    :param pred_y: 预测结果
  101 	    :param true_y: 真实结果
  102 	    :param beta: beta值
  103 	    :param positive: 正例的索引表示
  104 	    :return:
  105 	    """
  106 	    precision = binary_precision(pred_y, true_y, positive)
  107 	    recall = binary_recall(pred_y, true_y, positive)
  108 	    try:
  109 	        f_b = (1 + beta * beta) * precision * recall / (beta * beta * precision + recall)
  110 	    except:
  111 	        f_b = 0
  112 	    return f_b
  113 	
  114 	def multi_precision(pred_y, true_y, labels):
  115 	    """
  116 	    多类的精确率
  117 	    :param pred_y: 预测结果
  118 	    :param true_y: 真实结果
  119 	    :param labels: 标签列表
  120 	    :return:
  121 	    """
  122 	    if isinstance(pred_y[0], list):
  123 	        pred_y = [item[0] for item in pred_y]
  124 	
  125 	    precisions = [binary_precision(pred_y, true_y, label) for label in labels]
  126 	    prec = mean(precisions)
  127 	    return prec
  128 	
  129 	def multi_recall(pred_y, true_y, labels):
  130 	    """
  131 	    多类的召回率
  132 	    :param pred_y: 预测结果
  133 	    :param true_y: 真实结果
  134 	    :param labels: 标签列表
  135 	    :return:
  136 	    """
  137 	    if isinstance(pred_y[0], list):
  138 	        pred_y = [item[0] for item in pred_y]
  139 	
  140 	    recalls = [binary_recall(pred_y, true_y, label) for label in labels]
  141 	    rec = mean(recalls)
  142 	    return rec
  143 	
  144 	def multi_f_beta(pred_y, true_y, labels, beta=1.0):
  145 	    """
  146 	    多类的f beta值
  147 	    :param pred_y: 预测结果
  148 	    :param true_y: 真实结果
  149 	    :param labels: 标签列表
  150 	    :param beta: beta值
  151 	    :return:
  152 	    """
  153 	    if isinstance(pred_y[0], list):
  154 	        pred_y = [item[0] for item in pred_y]
  155 	
  156 	    f_betas = [binary_f_beta(pred_y, true_y, beta, label) for label in labels]
  157 	    f_beta = mean(f_betas)
  158 	    return f_beta
  159 	
  160 	def get_binary_metrics(pred_y, true_y, f_beta=1.0):
  161 	    """
  162 	    得到二分类的性能指标
  163 	    :param pred_y:
  164 	    :param true_y:
  165 	    :param f_beta:
  166 	    :return:
  167 	    """
  168 	    acc = accuracy(pred_y, true_y)
  169 	    recall = binary_recall(pred_y, true_y)
  170 	    precision = binary_precision(pred_y, true_y)
  171 	    f_beta = binary_f_beta(pred_y, true_y, f_beta)
  172 	    return acc, recall, precision, f_beta
  173 	
  174 	def get_multi_metrics(pred_y, true_y, labels, f_beta=1.0):
  175 	    """
  176 	    得到多分类的性能指标
  177 	    :param pred_y:
  178 	    :param true_y:
  179 	    :param labels:
  180 	    :param f_beta:
  181 	    :return:
  182 	    """
  183 	    acc = accuracy(pred_y, true_y)
  184 	    recall = multi_recall(pred_y, true_y, labels)
  185 	    precision = multi_precision(pred_y, true_y, labels)
  186 	    f_beta = multi_f_beta(pred_y, true_y, labels, f_beta)
  187 	    return acc, recall, precision, f_beta
  188 	
  189 	# 6 训练模型
  190 	# 生成训练集和验证集
  191 	trainReviews = data.trainReviews
  192 	trainLabels = data.trainLabels
  193 	evalReviews = data.evalReviews
  194 	evalLabels = data.evalLabels
  195 	wordEmbedding = data.wordEmbedding
  196 	labelList = data.labelList
  197 	
  198 	# 定义计算图
  199 	with tf.Graph().as_default():
  200 	
  201 	    session_conf = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)
  202 	    session_conf.gpu_options.allow_growth=True
  203 	    session_conf.gpu_options.per_process_gpu_memory_fraction = 0.9  # 配置gpu占用率  
  204 	
  205 	    sess = tf.Session(config=session_conf)
  206 	    
  207 	    # 定义会话
  208 	    with sess.as_default():
  209 	        bilstmattention = mode_structure.BiLSTMAttention(config, wordEmbedding)
  210 	        globalStep = tf.Variable(0, name="globalStep", trainable=False)
  211 	        # 定义优化函数,传入学习速率参数
  212 	        optimizer = tf.train.AdamOptimizer(config.training.learningRate)
  213 	        # 计算梯度,得到梯度和变量
  214 	        gradsAndVars = optimizer.compute_gradients(bilstmattention.loss)
  215 	        # 将梯度应用到变量下,生成训练器
  216 	        trainOp = optimizer.apply_gradients(gradsAndVars, global_step=globalStep)
  217 	        
  218 	        # 用summary绘制tensorBoard
  219 	        gradSummaries = []
  220 	        for g, v in gradsAndVars:
  221 	            if g is not None:
  222 	                tf.summary.histogram("{}/grad/hist".format(v.name), g)
  223 	                tf.summary.scalar("{}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g))
  224 	        
  225 	        outDir = os.path.abspath(os.path.join(os.path.curdir, "summarys"))
  226 	        print("Writing to {}\n".format(outDir))
  227 	        
  228 	        lossSummary = tf.summary.scalar("loss", bilstmattention.loss)
  229 	        summaryOp = tf.summary.merge_all()
  230 	        
  231 	        trainSummaryDir = os.path.join(outDir, "train")
  232 	        trainSummaryWriter = tf.summary.FileWriter(trainSummaryDir, sess.graph)
  233 	        
  234 	        evalSummaryDir = os.path.join(outDir, "eval")
  235 	        evalSummaryWriter = tf.summary.FileWriter(evalSummaryDir, sess.graph)
  236 	        
  237 	        
  238 	        # 初始化所有变量
  239 	        saver = tf.train.Saver(tf.global_variables(), max_to_keep=5)
  240 	        
  241 	        # 保存模型的一种方式,保存为pb文件
  242 	        savedModelPath = "../model/bilstm-atten/savedModel"
  243 	        if os.path.exists(savedModelPath):
  244 	            os.rmdir(savedModelPath)
  245 	        builder = tf.saved_model.builder.SavedModelBuilder(savedModelPath)
  246 	            
  247 	        sess.run(tf.global_variables_initializer())
  248 	
  249 	        def trainStep(batchX, batchY):
  250 	            """
  251 	            训练函数
  252 	            """   
  253 	            feed_dict = {
  254 	              bilstmattention.inputX: batchX,
  255 	              bilstmattention.inputY: batchY,
  256 	              bilstmattention.dropoutKeepProb: config.model.dropoutKeepProb
  257 	            }
  258 	            _, summary, step, loss, predictions = sess.run(
  259 	                [trainOp, summaryOp, globalStep, bilstmattention.loss, bilstmattention.predictions],
  260 	                feed_dict)
  261 	            timeStr = datetime.datetime.now().isoformat()
  262 	            
  263 	            if config.numClasses == 1:
  264 	                acc, recall, prec, f_beta = get_binary_metrics(pred_y=predictions, true_y=batchY)
  265 	
  266 	            elif config.numClasses > 1:
  267 	                acc, recall, prec, f_beta = get_multi_metrics(pred_y=predictions, true_y=batchY,
  268 	                                                              labels=labelList)
  269 	                
  270 	            trainSummaryWriter.add_summary(summary, step)
  271 	            
  272 	            return loss, acc, prec, recall, f_beta
  273 	
  274 	        def devStep(batchX, batchY):
  275 	            """
  276 	            验证函数
  277 	            """
  278 	            feed_dict = {
  279 	              bilstmattention.inputX: batchX,
  280 	              bilstmattention.inputY: batchY,
  281 	              bilstmattention.dropoutKeepProb: 1.0
  282 	            }
  283 	            summary, step, loss, predictions = sess.run(
  284 	                [summaryOp, globalStep, bilstmattention.loss, bilstmattention.predictions],
  285 	                feed_dict)
  286 	            
  287 	            if config.numClasses == 1:
  288 	            
  289 	                acc, precision, recall, f_beta = get_binary_metrics(pred_y=predictions, true_y=batchY)
  290 	            elif config.numClasses > 1:
  291 	                acc, precision, recall, f_beta = get_multi_metrics(pred_y=predictions, true_y=batchY, labels=labelList)
  292 	            
  293 	            evalSummaryWriter.add_summary(summary, step)
  294 	            
  295 	            return loss, acc, precision, recall, f_beta
  296 	        
  297 	        for i in range(config.training.epoches):
  298 	            # 训练模型
  299 	            print("start training model")
  300 	            for batchTrain in nextBatch(trainReviews, trainLabels, config.batchSize):
  301 	                loss, acc, prec, recall, f_beta = trainStep(batchTrain[0], batchTrain[1])
  302 	                
  303 	                currentStep = tf.train.global_step(sess, globalStep) 
  304 	                print("train: step: {}, loss: {}, acc: {}, recall: {}, precision: {}, f_beta: {}".format(
  305 	                    currentStep, loss, acc, recall, prec, f_beta))
  306 	                if currentStep % config.training.evaluateEvery == 0:
  307 	                    print("\nEvaluation:")
  308 	                    
  309 	                    losses = []
  310 	                    accs = []
  311 	                    f_betas = []
  312 	                    precisions = []
  313 	                    recalls = []
  314 	                    
  315 	                    for batchEval in nextBatch(evalReviews, evalLabels, config.batchSize):
  316 	                        loss, acc, precision, recall, f_beta = devStep(batchEval[0], batchEval[1])
  317 	                        losses.append(loss)
  318 	                        accs.append(acc)
  319 	                        f_betas.append(f_beta)
  320 	                        precisions.append(precision)
  321 	                        recalls.append(recall)
  322 	                        
  323 	                    time_str = datetime.datetime.now().isoformat()
  324 	                    print("{}, step: {}, loss: {}, acc: {},precision: {}, recall: {}, f_beta: {}".format(time_str, currentStep, mean(losses), 
  325 	                                                                                                       mean(accs), mean(precisions),
  326 	                                                                                                       mean(recalls), mean(f_betas)))
  327 	                    
  328 	                if currentStep % config.training.checkpointEvery == 0:
  329 	                    # 保存模型的另一种方法,保存checkpoint文件
  330 	                    path = saver.save(sess, "../model/bilstm-atten/model/my-model", global_step=currentStep)
  331 	                    print("Saved model checkpoint to {}\n".format(path))
  332 	                    
  333 	        inputs = {"inputX": tf.saved_model.utils.build_tensor_info(bilstmattention.inputX),
  334 	                  "keepProb": tf.saved_model.utils.build_tensor_info(bilstmattention.dropoutKeepProb)}
  335 	
  336 	        outputs = {"predictions": tf.saved_model.utils.build_tensor_info(bilstmattention.predictions)}
  337 	
  338 	        prediction_signature = tf.saved_model.signature_def_utils.build_signature_def(inputs=inputs, outputs=outputs,
  339 	                                                                                      method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME)
  340 	        legacy_init_op = tf.group(tf.tables_initializer(), name="legacy_init_op")
  341 	        builder.add_meta_graph_and_variables(sess, [tf.saved_model.tag_constants.SERVING],
  342 	                                            signature_def_map={"predict": prediction_signature}, legacy_init_op=legacy_init_op)
  343 	
  344 	        builder.save()

3.5 预测:predict.py

# Author:yifan
import os
import csv
import time
import datetime
import random
import json
from collections import Counter
from math import sqrt
import gensim
import pandas as pd
import numpy as np
import tensorflow as tf
from sklearn.metrics import roc_auc_score, accuracy_score, precision_score, recall_score
import parameter_config
config =parameter_config.Config()

#7预测代码
x = "this movie is full of references like mad max ii the wild one and many others the ladybug´s face it´s a clear reference or tribute to peter lorre this movie is a masterpiece we´ll talk much more about in the future"
# x = "his movie is the same as the third level movie. There's no place to look good"
# x = "This film is not good"   #最终反馈为0
# x = "This film is   bad"   #最终反馈为0

x = "this movie is full of references like mad max ii the wild one and many others the ladybug´s face it´s a clear reference or tribute to peter lorre this movie is a masterpiece we´ll talk much more about in the future"

# 注:下面两个词典要保证和当前加载的模型对应的词典是一致的
with open("../data/wordJson/word2idx.json", "r", encoding="utf-8") as f:
    word2idx = json.load(f)
        
with open("../data/wordJson/label2idx.json", "r", encoding="utf-8") as f:
    label2idx = json.load(f)
idx2label = {value: key for key, value in label2idx.items()}
    
xIds = [word2idx.get(item, word2idx["UNK"]) for item in x.split(" ")]
if len(xIds) >= config.sequenceLength:
    xIds = xIds[:config.sequenceLength]
else:
    xIds = xIds + [word2idx["PAD"]] * (config.sequenceLength - len(xIds))

graph = tf.Graph()
with graph.as_default():
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333)
    session_conf = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False, gpu_options=gpu_options)
    sess = tf.Session(config=session_conf)

    with sess.as_default():
        checkpoint_file = tf.train.latest_checkpoint("../model/bilstm-atten/model/")
        saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file))
        saver.restore(sess, checkpoint_file)

        # 获得需要喂给模型的参数,输出的结果依赖的输入值
        inputX = graph.get_operation_by_name("inputX").outputs[0]
        dropoutKeepProb = graph.get_operation_by_name("dropoutKeepProb").outputs[0]

        # 获得输出的结果
        predictions = graph.get_tensor_by_name("output/predictions:0")

        pred = sess.run(predictions, feed_dict={inputX: [xIds], dropoutKeepProb: 1.0})[0]

# print(pred)
pred = [idx2label[item] for item in pred]
print(pred)

结果

相关代码可见:https://github.com/yifanhunter/NLP_textClassifier

主要参考:

【1】 https://home.cnblogs.com/u/jiangxinyang/

posted @ 2020-07-22 22:01  忆凡人生  阅读(7520)  评论(2编辑  收藏  举报