【文本分类-04】BiLSTM

目录

  1. 大纲概述
  2. 数据集合
  3. 数据处理
  4. 预训练word2vec模型

一、大纲概述

文本分类这个系列将会有8篇左右文章,从github直接下载代码,从百度云下载训练数据,在pycharm上导入即可使用,包括基于word2vec预训练的文本分类,与及基于近几年的预训练模型(ELMo,BERT等)的文本分类。总共有以下系列:

word2vec预训练词向量

textCNN 模型

charCNN 模型

Bi-LSTM 模型

Bi-LSTM + Attention 模型

Transformer 模型

ELMo 预训练模型

BERT 预训练模型

二、数据集合

数据集为IMDB 电影影评,总共有三个数据文件,在/data/rawData目录下,包括unlabeledTrainData.tsv,labeledTrainData.tsv,testData.tsv。在进行文本分类时需要有标签的数据(labeledTrainData),但是在训练word2vec词向量模型(无监督学习)时可以将无标签的数据一起用上。

训练数据地址:链接:https://pan.baidu.com/s/1-XEwx1ai8kkGsMagIFKX_g 提取码:rtz8

三、主要代码 

3.1 配置训练参数:parameter_config.py

 

    1 	# 配置参数
    2 	class TrainingConfig(object):
    3 	    epoches = 10
    4 	    evaluateEvery = 100
    5 	    checkpointEvery = 100
    6 	    learningRate = 0.001
    7 	
    8 	class ModelConfig(object):
    9 	    embeddingSize = 200
   10 	    hiddenSizes = [256, 256]  # 单层LSTM结构的神经元个数
   11 	    dropoutKeepProb = 0.5
   12 	    l2RegLambda = 0.0
   13 	
   14 	class Config(object):
   15 	    sequenceLength = 200  # 取了所有序列长度的均值
   16 	    batchSize = 128
   17 	    dataSource = "../data/preProcess/labeledTrain.csv"
   18 	    stopWordSource = "../data/english"
   19 	    numClasses = 1  # 二分类设置为1,多分类设置为类别的数目
   20 	    rate = 0.8  # 训练集的比例
   21 	    training = TrainingConfig()
   22 	    model = ModelConfig()
   23 	
   24 	# 实例化配置参数对象
   25 	# config = Config()

 

3.2 获取训练数据:get_train_data.py

    1 	# Author:yifan
    2 	import json
    3 	from collections import Counter
    4 	import gensim
    5 	import pandas as pd
    6 	import numpy as np
    7 	import parameter_config
    8 	
    9 	# 2 数据预处理的类,生成训练集和测试集
   10 	#   1)将数据加载进来,将句子分割成词表示,并去除低频词和停用词。
   11 	#   2)将词映射成索引表示,构建词汇-索引映射表,并保存成json的数据格式,
   12 	#         之后做inference时可以用到。(注意,有的词可能不在word2vec的预训练词向量中,这种词直接用UNK表示)
   13 	#   3)从预训练的词向量模型中读取出词向量,作为初始化值输入到模型中。
   14 	#   4)将数据集分割成训练集和测试集
   15 	
   16 	class Dataset(object):
   17 	    def __init__(self, config):
   18 	        self.config = config
   19 	        self._dataSource = config.dataSource
   20 	        self._stopWordSource = config.stopWordSource
   21 	        self._sequenceLength = config.sequenceLength  # 每条输入的序列处理为定长
   22 	        self._embeddingSize = config.model.embeddingSize
   23 	        self._batchSize = config.batchSize
   24 	        self._rate = config.rate
   25 	        self._stopWordDict = {}
   26 	        self.trainReviews = []
   27 	        self.trainLabels = []
   28 	        self.evalReviews = []
   29 	        self.evalLabels = []
   30 	        self.wordEmbedding = None
   31 	        self.labelList = []
   32 	
   33 	    def _readData(self, filePath):
   34 	        """
   35 	        从csv文件中读取数据集
   36 	        """
   37 	        df = pd.read_csv(filePath)
   38 	        if self.config.numClasses == 1:
   39 	            labels = df["sentiment"].tolist()
   40 	        elif self.config.numClasses > 1:
   41 	            labels = df["rate"].tolist()
   42 	        review = df["review"].tolist()
   43 	        reviews = [line.strip().split() for line in review]
   44 	        return reviews, labels
   45 	
   46 	    def _labelToIndex(self, labels, label2idx):
   47 	        """
   48 	        将标签转换成索引表示
   49 	        """
   50 	        labelIds = [label2idx[label] for label in labels]
   51 	        return labelIds
   52 	
   53 	    def _wordToIndex(self, reviews, word2idx):
   54 	        """
   55 	        将词转换成索引
   56 	        """
   57 	        reviewIds = [[word2idx.get(item, word2idx["UNK"]) for item in review] for review in reviews]
   58 	        return reviewIds
   59 	
   60 	    def _genTrainEvalData(self, x, y, word2idx, rate):
   61 	        """
   62 	        生成训练集和验证集
   63 	        """
   64 	        reviews = []
   65 	        for review in x:
   66 	            if len(review) >= self._sequenceLength:
   67 	                reviews.append(review[:self._sequenceLength])
   68 	            else:
   69 	                reviews.append(review + [word2idx["PAD"]] * (self._sequenceLength - len(review)))
   70 	        trainIndex = int(len(x) * rate)
   71 	        trainReviews = np.asarray(reviews[:trainIndex], dtype="int64")
   72 	        trainLabels = np.array(y[:trainIndex], dtype="float32")
   73 	        evalReviews = np.asarray(reviews[trainIndex:], dtype="int64")
   74 	        evalLabels = np.array(y[trainIndex:], dtype="float32")
   75 	        return trainReviews, trainLabels, evalReviews, evalLabels
   76 	
   77 	    def _getWordEmbedding(self, words):
   78 	        """
   79 	        按照我们的数据集中的单词取出预训练好的word2vec中的词向量
   80 	        """
   81 	        wordVec = gensim.models.KeyedVectors.load_word2vec_format("../word2vec/word2Vec.bin", binary=True)
   82 	        vocab = []
   83 	        wordEmbedding = []
   84 	        # 添加 "pad" 和 "UNK",
   85 	        vocab.append("PAD")
   86 	        vocab.append("UNK")
   87 	        wordEmbedding.append(np.zeros(self._embeddingSize))
   88 	        wordEmbedding.append(np.random.randn(self._embeddingSize))
   89 	
   90 	        for word in words:
   91 	            try:
   92 	                vector = wordVec.wv[word]
   93 	                vocab.append(word)
   94 	                wordEmbedding.append(vector)
   95 	            except:
   96 	                print(word + "不存在于词向量中")
   97 	
   98 	        return vocab, np.array(wordEmbedding)
   99 	
  100 	    def _genVocabulary(self, reviews, labels):
  101 	        """
  102 	        生成词向量和词汇-索引映射字典,可以用全数据集
  103 	        """
  104 	        allWords = [word for review in reviews for word in review]
  105 	
  106 	        # 去掉停用词
  107 	        subWords = [word for word in allWords if word not in self.stopWordDict]
  108 	        wordCount = Counter(subWords)  # 统计词频
  109 	        sortWordCount = sorted(wordCount.items(), key=lambda x: x[1], reverse=True)
  110 	        # 去除低频词
  111 	        words = [item[0] for item in sortWordCount if item[1] >= 5]
  112 	
  113 	        vocab, wordEmbedding = self._getWordEmbedding(words)
  114 	        self.wordEmbedding = wordEmbedding
  115 	        word2idx = dict(zip(vocab, list(range(len(vocab)))))
  116 	
  117 	        uniqueLabel = list(set(labels))
  118 	        label2idx = dict(zip(uniqueLabel, list(range(len(uniqueLabel)))))
  119 	        self.labelList = list(range(len(uniqueLabel)))
  120 	        # 将词汇-索引映射表保存为json数据,之后做inference时直接加载来处理数据
  121 	        with open("../data/wordJson/word2idx.json", "w", encoding="utf-8") as f:
  122 	            json.dump(word2idx, f)
  123 	
  124 	        with open("../data/wordJson/label2idx.json", "w", encoding="utf-8") as f:
  125 	            json.dump(label2idx, f)
  126 	
  127 	        return word2idx, label2idx
  128 	
  129 	    def _readStopWord(self, stopWordPath):
  130 	        """
  131 	        读取停用词
  132 	        """
  133 	
  134 	        with open(stopWordPath, "r") as f:
  135 	            stopWords = f.read()
  136 	            stopWordList = stopWords.splitlines()
  137 	            # 将停用词用列表的形式生成,之后查找停用词时会比较快
  138 	            self.stopWordDict = dict(zip(stopWordList, list(range(len(stopWordList)))))
  139 	
  140 	    def dataGen(self):
  141 	        """
  142 	        初始化训练集和验证集
  143 	        """
  144 	        # 初始化停用词
  145 	        self._readStopWord(self._stopWordSource)
  146 	
  147 	        # 初始化数据集
  148 	        reviews, labels = self._readData(self._dataSource)
  149 	
  150 	        # 初始化词汇-索引映射表和词向量矩阵
  151 	        word2idx, label2idx = self._genVocabulary(reviews, labels)
  152 	
  153 	        # 将标签和句子数值化
  154 	        labelIds = self._labelToIndex(labels, label2idx)
  155 	        reviewIds = self._wordToIndex(reviews, word2idx)
  156 	
  157 	        # 初始化训练集和测试集
  158 	        trainReviews, trainLabels, evalReviews, evalLabels = self._genTrainEvalData(reviewIds, labelIds, word2idx,
  159 	                                                                                    self._rate)
  160 	        self.trainReviews = trainReviews
  161 	        self.trainLabels = trainLabels
  162 	
  163 	        self.evalReviews = evalReviews
  164 	        self.evalLabels = evalLabels
  165 	
  166 	#获取前些模块的数据
  167 	config =parameter_config.Config()
  168 	data = Dataset(config)
  169 	data.dataGen()

3.3 模型构建:mode_structure.py

    1 	import tensorflow as tf
    2 	import parameter_config
    3 	# 3 构建模型  Bi-LSTM模型
    4 	class BiLSTM(object):
    5 	    """
    6 	    Bi-LSTM 用于文本分类
    7 	    """
    8 	    def __init__(self, config, wordEmbedding):
    9 	        # 定义模型的输入
   10 	        self.inputX = tf.placeholder(tf.int32, [None, config.sequenceLength], name="inputX")
   11 	        self.inputY = tf.placeholder(tf.int32, [None], name="inputY")
   12 	        self.dropoutKeepProb = tf.placeholder(tf.float32, name="dropoutKeepProb")
   13 	
   14 	        # 定义l2损失
   15 	        l2Loss = tf.constant(0.0)
   16 	
   17 	        # 词嵌入层
   18 	        with tf.name_scope("embedding"):
   19 	            # 利用预训练的词向量初始化词嵌入矩阵
   20 	            self.W = tf.Variable(tf.cast(wordEmbedding, dtype=tf.float32, name="word2vec"), name="W")
   21 	            # 利用词嵌入矩阵将输入的数据中的词转换成词向量,维度[batch_size, sequence_length, embedding_size]
   22 	            self.embeddedWords = tf.nn.embedding_lookup(self.W, self.inputX)
   23 	
   24 	        # 定义两层双向LSTM的模型结构
   25 	        with tf.name_scope("Bi-LSTM"):
   26 	            for idx, hiddenSize in enumerate(config.model.hiddenSizes):
   27 	                with tf.name_scope("Bi-LSTM" + str(idx)):
   28 	                    # 定义前向LSTM结构
   29 	                    lstmFwCell = tf.nn.rnn_cell.DropoutWrapper(
   30 	                        tf.nn.rnn_cell.LSTMCell(num_units=hiddenSize, state_is_tuple=True),
   31 	                        output_keep_prob=self.dropoutKeepProb)
   32 	                    # 定义反向LSTM结构
   33 	                    lstmBwCell = tf.nn.rnn_cell.DropoutWrapper(
   34 	                        tf.nn.rnn_cell.LSTMCell(num_units=hiddenSize, state_is_tuple=True),
   35 	                        output_keep_prob=self.dropoutKeepProb)
   36 	
   37 	  # 采用动态rnn,可以动态的输入序列的长度,若没有输入,则取序列的全长
   38 	 # outputs是一个元祖(output_fw, output_bw),其中两个元素的维度都是[batch_size, max_time, hidden_size],fw和bw的hidden_size一样
   39 	 # self.current_state 是最终的状态,二元组(state_fw, state_bw),state_fw=[batch_size, s],s是一个元祖(h, c)
   40 	                    outputs, self.current_state = tf.nn.bidirectional_dynamic_rnn(lstmFwCell, lstmBwCell,
   41 	                                                                                  self.embeddedWords, dtype=tf.float32,
   42 	                                                                                  scope="bi-lstm" + str(idx))
   43 	
   44 	                    # 对outputs中的fw和bw的结果拼接 [batch_size, time_step, hidden_size * 2]
   45 	                    self.embeddedWords = tf.concat(outputs, 2)
   46 	
   47 	        # 去除最后时间步的输出作为全连接的输入
   48 	        finalOutput = self.embeddedWords[:, 0, :]
   49 	
   50 	        outputSize = config.model.hiddenSizes[-1] * 2  # 因为是双向LSTM,最终的输出值是fw和bw的拼接,因此要乘以2
   51 	        output = tf.reshape(finalOutput, [-1, outputSize])  # reshape成全连接层的输入维度
   52 	
   53 	        # 全连接层的输出
   54 	        with tf.name_scope("output"):
   55 	            outputW = tf.get_variable(
   56 	                "outputW",
   57 	                shape=[outputSize, config.numClasses],
   58 	                initializer=tf.contrib.layers.xavier_initializer())
   59 	
   60 	            outputB = tf.Variable(tf.constant(0.1, shape=[config.numClasses]), name="outputB")
   61 	            l2Loss += tf.nn.l2_loss(outputW)
   62 	            l2Loss += tf.nn.l2_loss(outputB)
   63 	            self.logits = tf.nn.xw_plus_b(output, outputW, outputB, name="logits")
   64 	            if config.numClasses == 1:
   65 	                self.predictions = tf.cast(tf.greater_equal(self.logits, 0.0), tf.float32, name="predictions")
   66 	            elif config.numClasses > 1:
   67 	                self.predictions = tf.argmax(self.logits, axis=-1, name="predictions")
   68 	
   69 	        # 计算二元交叉熵损失
   70 	        with tf.name_scope("loss"):
   71 	            if config.numClasses == 1:
   72 	                losses = tf.nn.sigmoid_cross_entropy_with_logits(logits=self.logits,
   73 	                                                                 labels=tf.cast(tf.reshape(self.inputY, [-1, 1]),
   74 	                                                                                dtype=tf.float32))
   75 	            elif config.numClasses > 1:
   76 	                losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=self.logits, labels=self.inputY)
   77 	
   78 	            self.loss = tf.reduce_mean(losses) + config.model.l2RegLambda * l2Loss

3.4 模型训练:mode_trainning.py

import os
import datetime
import numpy as np
import tensorflow as tf
import parameter_config
import get_train_data
import mode_structure

#因为电脑内存较小,只能选择CPU去训练了
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"

#获取前些模块的数据
config =parameter_config.Config()
data = get_train_data.Dataset(config)
data.dataGen()

#4生成batch数据集
def nextBatch(x, y, batchSize):
    # 生成batch数据集,用生成器的方式输出
    perm = np.arange(len(x))
    np.random.shuffle(perm)
    x = x[perm]
    y = y[perm]
    numBatches = len(x) // batchSize

    for i in range(numBatches):
        start = i * batchSize
        end = start + batchSize
        batchX = np.array(x[start: end], dtype="int64")
        batchY = np.array(y[start: end], dtype="float32")
        yield batchX, batchY

# 5 定义计算metrics的函数
"""
定义各类性能指标
"""
"""
定义各类性能指标
"""

def mean(item: list) -> float:
    """
    计算列表中元素的平均值
    :param item: 列表对象
    :return:
    """
    res = sum(item) / len(item) if len(item) > 0 else 0
    return res

def accuracy(pred_y, true_y):
    """
    计算二类和多类的准确率
    :param pred_y: 预测结果
    :param true_y: 真实结果
    :return:
    """
    if isinstance(pred_y[0], list):
        pred_y = [item[0] for item in pred_y]
    corr = 0
    for i in range(len(pred_y)):
        if pred_y[i] == true_y[i]:
            corr += 1
    acc = corr / len(pred_y) if len(pred_y) > 0 else 0
    return acc

def binary_precision(pred_y, true_y, positive=1):
    """
    二类的精确率计算
    :param pred_y: 预测结果
    :param true_y: 真实结果
    :param positive: 正例的索引表示
    :return:
    """
    corr = 0
    pred_corr = 0
    for i in range(len(pred_y)):
        if pred_y[i] == positive:
            pred_corr += 1
            if pred_y[i] == true_y[i]:
                corr += 1

    prec = corr / pred_corr if pred_corr > 0 else 0
    return prec

def binary_recall(pred_y, true_y, positive=1):
    """
    二类的召回率
    :param pred_y: 预测结果
    :param true_y: 真实结果
    :param positive: 正例的索引表示
    :return:
    """
    corr = 0
    true_corr = 0
    for i in range(len(pred_y)):
        if true_y[i] == positive:
            true_corr += 1
            if pred_y[i] == true_y[i]:
                corr += 1

    rec = corr / true_corr if true_corr > 0 else 0
    return re

def binary_f_beta(pred_y, true_y, beta=1.0, positive=1):
    """
    二类的f beta值
    :param pred_y: 预测结果
    :param true_y: 真实结果
    :param beta: beta值
    :param positive: 正例的索引表示
    :return:
    """
    precision = binary_precision(pred_y, true_y, positive)
    recall = binary_recall(pred_y, true_y, positive)
    try:
        f_b = (1 + beta * beta) * precision * recall / (beta * beta * precision + recall)
    except:
        f_b = 0
    return f_b

def multi_precision(pred_y, true_y, labels):
    """
    多类的精确率
    :param pred_y: 预测结果
    :param true_y: 真实结果
    :param labels: 标签列表
    :return:
    """
    if isinstance(pred_y[0], list):
        pred_y = [item[0] for item in pred_y]

    precisions = [binary_precision(pred_y, true_y, label) for label in labels]
    prec = mean(precisions)
    return prec

def multi_recall(pred_y, true_y, labels):
    """
    多类的召回率
    :param pred_y: 预测结果
    :param true_y: 真实结果
    :param labels: 标签列表
    :return:
    """
    if isinstance(pred_y[0], list):
        pred_y = [item[0] for item in pred_y]

    recalls = [binary_recall(pred_y, true_y, label) for label in labels]
    rec = mean(recalls)
    return rec

def multi_f_beta(pred_y, true_y, labels, beta=1.0):
    """
    多类的f beta值
    :param pred_y: 预测结果
    :param true_y: 真实结果
    :param labels: 标签列表
    :param beta: beta值
    :return:
    """
    if isinstance(pred_y[0], list):
        pred_y = [item[0] for item in pred_y]

    f_betas = [binary_f_beta(pred_y, true_y, beta, label) for label in labels]
    f_beta = mean(f_betas)
    return f_beta

def get_binary_metrics(pred_y, true_y, f_beta=1.0):
    """
    得到二分类的性能指标
    :param pred_y:
    :param true_y:
    :param f_beta:
    :return:
    """
    acc = accuracy(pred_y, true_y)
    recall = binary_recall(pred_y, true_y)
    precision = binary_precision(pred_y, true_y)
    f_beta = binary_f_beta(pred_y, true_y, f_beta)
    return acc, recall, precision, f_beta

def get_multi_metrics(pred_y, true_y, labels, f_beta=1.0):
    """
    得到多分类的性能指标
    :param pred_y:
    :param true_y:
    :param labels:
    :param f_beta:
    :return:
    """
    acc = accuracy(pred_y, true_y)
    recall = multi_recall(pred_y, true_y, labels)
    precision = multi_precision(pred_y, true_y, labels)
    f_beta = multi_f_beta(pred_y, true_y, labels, f_beta)
    return acc, recall, precision, f_beta

# 6 训练模型
# 生成训练集和验证集
trainReviews = data.trainReviews
trainLabels = data.trainLabels
evalReviews = data.evalReviews
evalLabels = data.evalLabels

wordEmbedding = data.wordEmbedding
labelList = data.labelList

# 定义计算图
with tf.Graph().as_default():
    session_conf = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)
    session_conf.gpu_options.allow_growth = True
    session_conf.gpu_options.per_process_gpu_memory_fraction = 0.9  # 配置gpu占用率

    sess = tf.Session(config=session_conf)

    # 定义会话
    with sess.as_default():
        lstm = mode_structure.BiLSTM(config, wordEmbedding)
        globalStep = tf.Variable(0, name="globalStep", trainable=False)
        # 定义优化函数,传入学习速率参数
        optimizer = tf.train.AdamOptimizer(config.training.learningRate)
        # 计算梯度,得到梯度和变量
        gradsAndVars = optimizer.compute_gradients(lstm.loss)
        # 将梯度应用到变量下,生成训练器
        trainOp = optimizer.apply_gradients(gradsAndVars, global_step=globalStep)

        # 用summary绘制tensorBoard
        gradSummaries = []
        for g, v in gradsAndVars:
            if g is not None:
                tf.summary.histogram("{}/grad/hist".format(v.name), g)
                tf.summary.scalar("{}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g))

        outDir = os.path.abspath(os.path.join(os.path.curdir, "summarys"))
        print("Writing to {}\n".format(outDir))

        lossSummary = tf.summary.scalar("loss", lstm.loss)
        summaryOp = tf.summary.merge_all()

        trainSummaryDir = os.path.join(outDir, "train")
        trainSummaryWriter = tf.summary.FileWriter(trainSummaryDir, sess.graph)

        evalSummaryDir = os.path.join(outDir, "eval")
        evalSummaryWriter = tf.summary.FileWriter(evalSummaryDir, sess.graph)

        # 初始化所有变量
        saver = tf.train.Saver(tf.global_variables(), max_to_keep=5)

        # 保存模型的一种方式,保存为pb文件
        savedModelPath = "../model/Bi-LSTM/savedModel"
        if os.path.exists(savedModelPath):
            os.rmdir(savedModelPath)
        builder = tf.saved_model.builder.SavedModelBuilder(savedModelPath)

        sess.run(tf.global_variables_initializer())

        def trainStep(batchX, batchY):
            """
            训练函数
            """
            feed_dict = {
                lstm.inputX: batchX,
                lstm.inputY: batchY,
                lstm.dropoutKeepProb: config.model.dropoutKeepProb
            }
            _, summary, step, loss, predictions = sess.run(
                [trainOp, summaryOp, globalStep, lstm.loss, lstm.predictions],
                feed_dict)

            timeStr = datetime.datetime.now().isoformat()

            if config.numClasses == 1:
                acc, recall, prec, f_beta = get_binary_metrics(pred_y=predictions, true_y=batchY)

            elif config.numClasses > 1:
                acc, recall, prec, f_beta = get_multi_metrics(pred_y=predictions, true_y=batchY,
                                                              labels=labelList)

            trainSummaryWriter.add_summary(summary, step)

            return loss, acc, prec, recall, f_beta

        def devStep(batchX, batchY):
            """
            验证函数
            """
            feed_dict = {
                lstm.inputX: batchX,
                lstm.inputY: batchY,
                lstm.dropoutKeepProb: 1.0
            }
            summary, step, loss, predictions = sess.run(
                [summaryOp, globalStep, lstm.loss, lstm.predictions],
                feed_dict)

            if config.numClasses == 1:
                acc, precision, recall, f_beta = get_binary_metrics(pred_y=predictions, true_y=batchY)
            elif config.numClasses > 1:
                acc, precision, recall, f_beta = get_multi_metrics(pred_y=predictions, true_y=batchY, labels=labelList)

            evalSummaryWriter.add_summary(summary, step)

            return loss, acc, precision, recall, f_beta

        for i in range(config.training.epoches):
            # 训练模型
            print("start training model")
            for batchTrain in nextBatch(trainReviews, trainLabels, config.batchSize):
                loss, acc, prec, recall, f_beta = trainStep(batchTrain[0], batchTrain[1])

                currentStep = tf.train.global_step(sess, globalStep)
                print("train: step: {}, loss: {}, acc: {}, recall: {}, precision: {}, f_beta: {}".format(
                    currentStep, loss, acc, recall, prec, f_beta))
                if currentStep % config.training.evaluateEvery == 0:
                    print("\nEvaluation:")

                    losses = []
                    accs = []
                    f_betas = []
                    precisions = []
                    recalls = []

                    for batchEval in nextBatch(evalReviews, evalLabels, config.batchSize):
                        loss, acc, precision, recall, f_beta = devStep(batchEval[0], batchEval[1])
                        losses.append(loss)
                        accs.append(acc)
                        f_betas.append(f_beta)
                        precisions.append(precision)
                        recalls.append(recall)

                    time_str = datetime.datetime.now().isoformat()
                    print("{}, step: {}, loss: {}, acc: {},precision: {}, recall: {}, f_beta: {}".format(time_str,
                                                                                                         currentStep,
                                                                                                         mean(losses),
                                                                                                         mean(accs),
                                                                                                         mean(
                                                                                                             precisions),
                                                                                                         mean(recalls),
                                                                                                         mean(f_betas)))

                if currentStep % config.training.checkpointEvery == 0:
                    # 保存模型的另一种方法,保存checkpoint文件
                    path = saver.save(sess, "../model/Bi-LSTM/model/my-model", global_step=currentStep)
                    print("Saved model checkpoint to {}\n".format(path))

        inputs = {"inputX": tf.saved_model.utils.build_tensor_info(lstm.inputX),
                  "keepProb": tf.saved_model.utils.build_tensor_info(lstm.dropoutKeepProb)}

        outputs = {"predictions": tf.saved_model.utils.build_tensor_info(lstm.predictions)}#这里应该是lstm.binaryPreds。

        prediction_signature = tf.saved_model.signature_def_utils.build_signature_def(inputs=inputs, outputs=outputs,
                                                                                      method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME)
        legacy_init_op = tf.group(tf.tables_initializer(), name="legacy_init_op")
        builder.add_meta_graph_and_variables(sess, [tf.saved_model.tag_constants.SERVING],
                                             signature_def_map={"predict": prediction_signature},
                                             legacy_init_op=legacy_init_op)

        builder.save()

3.5 预测:predict.py

    1 	# Author:yifan
    2 	import os
    3 	import csv
    4 	import time
    5 	import datetime
    6 	import random
    7 	import json
    8 	from collections import Counter
    9 	from math import sqrt
   10 	import gensim
   11 	import pandas as pd
   12 	import numpy as np
   13 	import tensorflow as tf
   14 	from sklearn.metrics import roc_auc_score, accuracy_score, precision_score, recall_score
   15 	import parameter_config
   16 	config =parameter_config.Config()
   17 	
   18 	#7预测代码
   19 	x = "this movie is full of references like mad max ii the wild one and many others the ladybug´s face it´s a clear reference or tribute to peter lorre this movie is a masterpiece we´ll talk much more about in the future"
   20 	
   21 	# 注:下面两个词典要保证和当前加载的模型对应的词典是一致的
   22 	with open("../data/wordJson/word2idx.json", "r", encoding="utf-8") as f:
   23 	    word2idx = json.load(f)
   24 	
   25 	with open("../data/wordJson/label2idx.json", "r", encoding="utf-8") as f:
   26 	    label2idx = json.load(f)
   27 	idx2label = {value: key for key, value in label2idx.items()}
   28 	
   29 	xIds = [word2idx.get(item, word2idx["UNK"]) for item in x.split(" ")]
   30 	if len(xIds) >= config.sequenceLength:
   31 	    xIds = xIds[:config.sequenceLength]
   32 	else:
   33 	    xIds = xIds + [word2idx["PAD"]] * (config.sequenceLength - len(xIds))
   34 	
   35 	graph = tf.Graph()
   36 	with graph.as_default():
   37 	    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333)
   38 	    session_conf = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False, gpu_options=gpu_options)
   39 	    sess = tf.Session(config=session_conf)
   40 	
   41 	    with sess.as_default():
   42 	        checkpoint_file = tf.train.latest_checkpoint("../model/Bi-LSTM/model/")
   43 	        saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file))
   44 	        saver.restore(sess, checkpoint_file)
   45 	
   46 	        # 获得需要喂给模型的参数,输出的结果依赖的输入值
   47 	        inputX = graph.get_operation_by_name("inputX").outputs[0]
   48 	        dropoutKeepProb = graph.get_operation_by_name("dropoutKeepProb").outputs[0]
   49 	
   50 	        # 获得输出的结果
   51 	        predictions = graph.get_tensor_by_name("output/predictions:0")
   52 	
   53 	        pred = sess.run(predictions, feed_dict={inputX: [xIds], dropoutKeepProb: 1.0})[0]
   54 	
   55 	# print(pred)
   56 	pred = [idx2label[item] for item in pred]
   57 	print(pred)

结果

相关代码可见:https://github.com/yifanhunter/NLP_textClassifier

主要参考:

【1】 https://home.cnblogs.com/u/jiangxinyang/

posted @ 2020-07-22 22:01  忆凡人生  阅读(1618)  评论(0编辑  收藏  举报