格拉姆矩阵(Gram matrix)详细解读
目录
- 基础知识-向量的内积
- Gram matrix介绍
- Gram matrix的应用-风格迁移
一、基础知识-向量的内积
1.1 向量的内积定义:也叫向量的点乘,对两个向量执行内积运算,就是对这两个向量对应位一一相乘之后求和的操作,内积的结果是一个标量。
1.2 实例:
a和b的内积公式为:
1.3 作用:
内积判断向量a和向量b之间的夹角和方向关系
- a·b>0 方向基本相同,夹角在0°到90°之间
- a·b=0 正交,相互垂直
- a·b<0 方向基本相反,夹角在90°到180°之间
Gram矩阵是两两向量的内积组成,所以Gram矩阵可以反映出该组向量中各个向量之间的某种关系。
二、Gram matrix介绍
2.1 定义
n维欧式空间中任意k个向量之间两两的内积所组成的矩阵,称为这k个向量的格拉姆矩阵(Gram matrix),很明显,这是一个对称矩阵。
更加直观的理解:
2.2 计算和特征表示
输入图像的feature map为[ ch, h, w]。我们经过flatten(即是将h*w进行平铺成一维向量)和矩阵转置操作,可以变形为[ ch, h*w]和[ h*w, ch]的矩阵。再对两个作内积得到Gram Matrices。 (蓝色条表示每个通道flatten后特征点,最后得到 [ch *ch ]的G矩阵)
2.3 进一步理解
格拉姆矩阵可以看做feature之间的偏心协方差矩阵(即没有减去均值的协方差矩阵),在feature map中,每个数字都来自于一个特定滤波器在特定位置的卷积,因此每个数字代表一个特征的强度,而Gram计算的实际上是两两特征之间的相关性,哪两个特征是同时出现的,哪两个是此消彼长的等等。
格拉姆矩阵用于度量各个维度自己的特性以及各个维度之间的关系。内积之后得到的多尺度矩阵中,对角线元素提供了不同特征图各自的信息,其余元素提供了不同特征图之间的相关信息。这样一个矩阵,既能体现出有哪些特征,又能体现出不同特征间的紧密程度。
关键点:gram矩阵是计算每个通道 i 的feature map与每个通道 j 的feature map的内积。gram matrix的每个值可以说是代表 I 通道的feature map与 j 通道的feature map的互相关程度。
三、Gram matrix的应用-风格迁移
深度学习中经典的风格迁移大体流程是:
1. 准备基准图像和风格图像
2. 使用深层网络分别提取基准图像(加白噪声)和风格图像的特征向量(或者说是特征图feature map)
3. 分别计算两个图像的特征向量的Gram矩阵,以两个图像的Gram矩阵的差异最小化为优化目标,不断调整基准图像,使风格不断接近目标风格图像
关键的一个是在网络中提取的特征图,一般来说浅层网络提取的是局部的细节纹理特征,深层网络提取的是更抽象的轮廓、大小等信息。这些特征总的结合起来表现出来的感觉就是图像的风格,由这些特征向量计算出来的的Gram矩阵,就可以把图像特征之间隐藏的联系提取出来,也就是各个特征之间的相关性高低。
如果两个图像的特征向量的Gram矩阵的差异较小,就可以认定这两个图像风格是相近的。有了表示风格的Gram Matrix,要度量两个图像风格的差异,只需比较他们Gram Matrix的差异即可。
具体可见另一篇文章《风格迁移论文理解--A Neural Algorithm of Artistic Style》展开的介绍。