【ML-13-4】隐马尔科夫模型HMM--预测问题Viterbi(维特比)算法

【ML-13-1】隐马尔科夫模型HMM

【ML-13-2】隐马尔科夫模型HMM--前向后向算法

【ML-13-3】隐马尔科夫模型HMM--Baum-Welch(鲍姆-韦尔奇)

【ML-13-4】隐马尔科夫模型HMM--预测问题Viterbi(维特比)算法 

目录

  1. 基础--HMM常用概率的计算
  2. HMM最可能隐藏状态序列近似算法
  3. Viterbi(维特比)算法
  4. Viterbi(维特比)算法举例

HMM模型最后一个问题的求解:求给定观测序列条件下,最可能出现的对应的隐藏状态序列。即给定模型λ=(A,B,π)和观测序列Q={q1,q2,...,qT},求给定观测序列条件概率P(I|Q,λ)最大的隐含状态序列 I。在阅读本篇前,建议先阅读这个系列的第一篇以熟悉HMM模型。

HMM模型的解码问题最常用的算法是维特比Viterbi(维特比)算法,当然也有其他的算法可以求解这个问题。同时维特比算法是一个通用的求序列最短路径的动态规划算法,也可以用于很多其他问题,比如文本挖掘的分词原理中单独用维特比算法来做分词。

  本文关注于用维特比算法来解码HMM的的最可能隐藏状态序列。

一、基础--HMM常用概率的计算

 利用前向概率和后向概率,我们可以计算出HMM中单个状态和两个状态的概率公式。

1.1 单个状态的概率

求给定模型λ和观测序列Q的情况下,在时刻t处于状态si的概率,记做:

单个状态概率的意义主要是用于判断在每个时刻最可能存在的状态,从而可以得到一个状态序列作为最终的预测结果。

利用前向概率和后向概率的定义可知:

由上面两个表达式可知:

1.2 两个状态的联合概率

求给定模型λ和观测序列Q的情况下,在时刻t处于状态si并时刻t+1处于状态sj概率,记做:

1.3 上述两种求和可以得到:

二、HMM最可能隐藏状态序列近似算法  

在HMM模型的解码问题中,给定模型λ=(A,B,Π)和观测序列,求给定观测序列Q条件下,最可能出现的对应的状态序列I={i1,i2,...iT},即P(I|Q)要最大化。直接在每个时刻t时候最优可能的状态作为最终的预测状态,使用下列公式计算概率值:

只要求得满足使得上式概率最大的值,可以通过前向和后向求得。

近似算法很简单,但是却不能保证预测的状态序列是整体是最可能的状态序列,因为预测的状态序列中某些相邻的隐藏状态可能存在转移概率为0的情况。

  而维特比算法可以将HMM的状态序列作为一个整体来考虑,避免近似算法的问题,下面我们来看看维特比算法进行HMM解码的方法。

三、Viterbi(维特比)算法

Viterbi算法实际是用动态规划的思路求解HMM预测问题,求出概率最大的"路径",每条"路径"对应一个状态序列:

时刻t隐藏状态为i所有可能的状态转移路径i1,i2,...it中的概率最大值。记为δt(i):

由δt(i)的定义可以得到δ的递推表达式:

计算时刻T最大的δT(i),即为最可能隐藏状态序列出现的概率。

使得上式最大后,最终得到最有可能的隐藏状态序列I={i1,i2,...iT}

四、Viterbi(维特比)算法举例

4.1 例题

假设有三个盒子,编号为1,2,3;每个盒子都装有黑白两种颜色的小球,球的比例如下:

按照下列规则的方式进行有放回的抽取小球,得到球颜色的观测序列:

  1. 按照π的概率选择一个盒子,从盒子中随机抽取出一个小球,记录颜色后,放回盒子中;
  2. 按照某种条件概率选择新的盒子,重复该操作;
  3. 最终得到观测序列:"白黑白白黑
  • 状态集合:S={盒子1,盒子2,盒子3}
  • 观测集合:O={白,黑}
  • 状态序列和观测序列的长度T=5
  • 初始概率分布π
  • 状态转移概率矩阵A
  • 观测概率矩阵B

在给定参数π、A、B的时候,得到观测序列为"白黑白白黑",求出最优的隐藏状态序列。

4.2 计算过程

最终盒子序列为: (2, 3, 2, 2, 3),详细推到见下面的表格

附件一:手写练习

附件二:考点

 

posted @ 2020-04-12 12:54  忆凡人生  阅读(1764)  评论(3编辑  收藏  举报