【TF-2-1】Tensorflow-控制依赖和指定运行设备

一、TensorFlow控制依赖

1.1 简介

我们可以通过Variable和assign完成变量的定义和更新,但是如果在更新变量之前需要更新其它变量,那么会导致一个比较严重的问题:也就是需要多次调用sess.run方法来进行变量的更新。通过这种方式,代码复杂程度上升,同时也没有执行效率。

解决该问题的方案就是:控制依赖。通过TensorFlow中提供的一组函数来处理不完全依赖的情况下的操作排序问题(即给定哪个操作先执行的问题), 通过tf.control_dependencies API完成。如上一篇【TF-1-1】Tensorflow实验--入门中的最后:

tmp_sum=sum*i

assign_op=tf.assign(sum,tmp_sum)

With tf.control_dependencies([assign_op]):

#如果需要执行这个代码块中的内容,必须先执行control_dependencies中给定的操作/tensor

sum=tf.Print(sum,data=[sum,sum.read_value()])

1.2 示例代码:实现一个求解阶乘

 

    1 	# 1. 定义一个变量
    2 	sum = tf.Variable(1, dtype=tf.int32)
    3 	# 2. 定义一个占位符
    4 	i = tf.placeholder(dtype=tf.int32)
    5 	# 3. 更新操作
    6 	tmp_sum = sum * i   # 一样的效果 tmp_sum = tf.multiply(sum, i)
    7 	assign_op = tf.assign(sum, tmp_sum)
    8 	with tf.control_dependencies([assign_op]):
    9 	# 如果需要执行这个代码块中的内容,必须先执行control_dependencies中给定的操作/tensor
   10 	    sum = tf.Print(sum, data=[sum, sum.read_value()], message='sum:')
   11 	# 4. 变量初始化操作
   12 	x_init_op = tf.global_variables_initializer()
   13 	# 5. 运行
   14 	with tf.Session(config=tf.ConfigProto(log_device_placement=True, allow_soft_placement=True)) as sess:
   15 	    sess.run(x_init_op)  # 变量初始化
   16 	    # 模拟迭代更新累加器
   17 	    for j in range(1, 6):
   18 	        # 执行更新操作
   19 	        # 通过control_dependencies可以指定依赖关系,这样的话,就不用管内部的更新操作了
   20 	        r = sess.run(sum, feed_dict={i: j})
   21 	    print("5!={}".format(r))

 

  

 

二、TensorFlow运行设备指定

2.1 简介

设备是指一块可以用来运算并且拥有自己的地址空间的硬件,如CPU和GPU。Tensorflow为了在执行操作的时候,充分利用计算资源,可以明确指定操作在哪个设备上执行。

一般情况下,不需要显示指定使用CPU还是GPU,TensorFlow会自动检测。如果检测到GPU,TensorFlow会尽可能地利用第一个GPU来执行操作。注意:如果机器上有超过一个可用的GPU,那么除了第一个外其它GPU默认是不参与计算的。所以,在实际TensorFlow编程中,经常需要明确给定使用的CPU和GPU。

"/cpu:0":表示使用机器CPU运算

"/gpu:0":表示使用第一个GPU运算,如果有的话

"/gpu:1":表示使用第二个GPU运算,以此类推

注意:

1、如果按照的tensorflow cpu版本,没法指定运行环境的

2、有一些操作,是不会再GPU上运行的

3、设置不同设备上运行,是为了能够并行提高效率。

2.2 实例

    1 	import tensorflow as tf
    2 	with tf.device('/cpu:0'):  # 这个代码块中定义的操作,会在tf.device给定的设备上运行
    3 	    a = tf.Variable([1, 2, 3], dtype=tf.int32, name='a')
    4 	    b = tf.constant(2, dtype=tf.int32, name='b')
    5 	    c = tf.add(a, b, name='ab')
    6 	with tf.device('/gpu:1'):
    7 	    d = tf.Variable([2, 8, 13], dtype=tf.int32, name='d')
    8 	    e = tf.constant(2, dtype=tf.int32, name='e')
    9 	    f = d + e
   10 	g = c + f
   11 	with tf.Session(config=tf.ConfigProto(log_device_placement=True, allow_soft_placement=True)) as sess:
   12 	    tf.global_variables_initializer().run()     # 初始化
   13 	    print(g.eval())

结果:

posted @ 2020-03-16 23:13  忆凡人生  阅读(601)  评论(0编辑  收藏  举报