Loading

「学习笔记」扩展 KMP(Z 函数)

对于个长度为 \(n\) 的字符串 \(s\)。定义 \(z[i]\) 表示 \(s\)\(s[i,n-1]\)(即以 \(s[i]\) 开头的后缀)的最长公共前缀(LCP)的长度。\(z\) 被称为 \(s\) 的 Z 函数。这里注意,在 Z 函数中,\(z[0] = 0\),但是根据 LCP 的定义,\(z[0] = n\),具体应该为何值,根据题目意思来判断。本文更偏向根据 LCP 的定义来确定 \(z[0]\) 的值

演示

对于字符串 \(\texttt{aaaaaaaba}\),它的 Z 函数是这样的。

\[z(\texttt{aaaaaaaba}) = \left [9, 6, 5, 4, 3, 2, 1, 0, 1 \right ] \]

过程

我们设现在 \(i + z[i] - 1\) 的最大值为 \(r\),得到这个最大值的 \(i\)\(l\)

image

假设我们现在要求 \(z[x]\)\(z[0, x - 1]\) 已经求出来了,现在,让我们分类讨论各种情况。

  • \(x \le r\)

如图所示,

image

因为 \(s[l, r]\) 等于 \(s[0, r - l]\),所以 \(s[l, x] = s[0, x - l]\),对应到下图,就是绿色区域和黄色区域相同。

image

因此,\(z[x]\) 的取值可以参考 \(z[l - x]\)

\(z[x]\) 可以直接等于 \(z[l - x]\) 吗?

显然是不行的,像下面的情况,灰色区域为 \(z[l - x]\) 的长度,但是,对于 \(x\),有一小段的灰色区域超出了红色区域,因此不保证这段灰色区域与前面灰色区域的对应位置相等,所以,我们正确的写法应该是 \(z[x] = \min \{z[x - l], r - x + 1 \}\),随后再暴力拓展。

image

  • \(x > r\)

没有“前车之鉴”,我们直接进行暴力拓展即可。


代码中的 \(i\) 就是 \(x\)

if (i <= r) {
    z[i] = min(z[i - l], 1ll * r - i + 1);
}

暴力拓展 + 修改 \(l, r\)

注意要判断边界,同时判断 \(x + z[x] - 1\)\(r\) 的大小更新 \(l, r\),相信你可以看懂这段代码。

while (i + z[i] < len and s[z[i]] == s[i + z[i]]) {
    ++ z[i];
}
if (i + z[i] - 1 > r) {
    l = i;
    r = i + z[i] - 1;
}

拼凑一下,就是 Z 函数(或者是扩展 KMP)的代码了。

void Z(char* s, ll* z) {
    int len = strlen(s), l = 0, r = 0;
    rep (i, 1, len - 1, 1) {
        if (i <= r) {
            z[i] = min(z[i - l], 1ll * r - i + 1);
        }
        while (i + z[i] < len and s[z[i]] == s[i + z[i]]) {
            ++ z[i];
        }
        if (i + z[i] - 1 > r) {
            l = i;
            r = i + z[i] - 1;
        }
    }
}

匹配所有子串

为了避免混淆,我们将 \(t\) 称作 文本,将 \(p\) 称作 模式。所给出的问题是:寻找在文本 \(t\) 中模式 \(p\) 的所有出现。

为了解决该问题,我们构造一个新的字符串 \(s = p + \diamond + t\),也即我们将 \(p\)\(t\) 连接在一起,但是在中间放置了一个分割字符 \(\diamond\)(我们将如此选取 \(\diamond\) 使得其必定不出现在 \(p\)\(t\) 中)。

首先计算 \(s\) 的 Z 函数。接下来,对于在区间 \([0,\left |t \right | - 1]\) 中的任意 \(i\),我们考虑以 \(t[i]\) 为开头的后缀在 \(s\) 中的 Z 函数值 \(k = z[i + \left |p \right | + 1]\)。如果 \(k = \left |p \right |\),那么我们知道有一个 \(p\) 的出现位于 \(t\) 的第 \(i\) 个位置,否则没有 \(p\) 的出现位于 \(t\) 的第 \(i\) 个位置。

其时间复杂度(同时也是其空间复杂度)为 \(O(\left |t \right | + \left |p \right |)\)

// 匹配 A 在 B 中的所有出现
void Z(char* s, ll* z) {
    int len = strlen(s), l = 0, r = 0;
    rep (i, 1, len - 1, 1) {
        if (i <= r) {
            z[i] = min(z[i - l], 1ll * r - i + 1);
        }
        while (i + z[i] < len and s[z[i]] == s[i + z[i]]) {
            ++ z[i];
        }
        if (i + z[i] - 1 > r) {
            l = i;
            r = i + z[i] - 1;
        }
    }
}

void get_ext() {
    strcpy(p, b);
    strcat(p, "#");
    strcat(p, a);
    Z(p, z);
}

P5410 【模板】扩展 KMP(Z 函数) - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)

//The code was written by yifan, and yifan is neutral!!!

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define bug puts("NOIP rp ++!");
#define rep(i, a, b, c) for (int i = (a); i <= (b); i += (c))
#define per(i, a, b, c) for (int i = (a); i >= (b); i -= (c))

template<typename T>
inline T read() {
    T x = 0;
    bool fg = 0;
    char ch = getchar();
    while (ch < '0' || ch > '9') {
        fg |= (ch == '-');
        ch = getchar();
    }
    while (ch >= '0' && ch <= '9') {
        x = (x << 3) + (x << 1) + (ch ^ 48);
        ch = getchar();
    }
    return fg ? ~x + 1 : x;
}

const int N = 2e7 + 5;

ll z[N << 1];
char a[N], b[N], p[N << 1];

void input() {
    scanf("%s", a);
    scanf("%s", b);
}

void Z(char* s, ll* z) {
    int len = strlen(s), l = 0, r = 0;
    rep (i, 1, len - 1, 1) {
        if (i <= r) {
            z[i] = min(z[i - l], 1ll * r - i + 1);
        }
        while (i + z[i] < len and s[z[i]] == s[i + z[i]]) {
            ++ z[i];
        }
        if (i + z[i] - 1 > r) {
            l = i;
            r = i + z[i] - 1;
        }
    }
}

void get_ext() {
    strcpy(p, b);
    strcat(p, "#");
    strcat(p, a);
    Z(p, z);
}

void solve() {
    int lenz = strlen(b);
    int lenext = strlen(p);
    ll ans = 0;
    z[0] = lenz;
    rep (i, 0, lenz - 1, 1) {
        ans = ans ^ ((i + 1) * (z[i] + 1));
    }
    cout << ans;
    putchar('\n');
    ans = 0;
    rep (i, lenz + 1, lenext - 1, 1) {
        ans = ans ^ ((i - lenz) * (z[i] + 1));
    }
    cout << ans;
    putchar('\n');
}

int main() {
    input();
    get_ext();
    solve();
    return 0;
}

字符串整周期

给定一个长度为 \(n\) 的字符串 \(s\),找到其最短的整周期,即寻找一个最短的字符串 \(t\),使得 \(s\) 可以被若干个 \(t\) 拼接而成的字符串表示。

考虑计算 \(s\) 的 Z 函数,则其整周期的长度为最小的 \(n\) 的因数 \(i\),满足 \(i+z[i]=n\)

题目

P7114 [NOIP2020] 字符串匹配 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)

求出每个位置的 Z 函数,通过判断 \((AB)\) 个数的奇偶来计算出现奇数次字符的个数,用树状数组维护。

//The code was written by yifan, and yifan is neutral!!!

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define bug puts("NOIP rp ++!");
#define rep(i, a, b, c) for (int i = (a); i <= (b); i += (c))
#define per(i, a, b, c) for (int i = (a); i >= (b); i -= (c))
#define lowbit(x) (x & (-x))

template<typename T>
inline T read() {
    T x = 0;
    bool fg = 0;
    char ch = getchar();
    while (ch < '0' || ch > '9') {
        fg |= (ch == '-');
        ch = getchar();
    }
    while (ch >= '0' && ch <= '9') {
        x = (x << 3) + (x << 1) + (ch ^ 48);
        ch = getchar();
    }
    return fg ? ~x + 1 : x;
}

const int N = 2e6 + 5;

int T, n, all, prefix, suffix;
int pre[30], nxt[30], Z[N], t[30];
char s[N];

void input() {
    scanf("%s", s);
}

void exkmp() {
    int l = 0, r = 0;
    rep (i, 1, n - 1, 1) {
        if (i <= r) {
            Z[i] = min(Z[i - l], r - i + 1);
        }
        while (s[i + Z[i]] == s[Z[i]] and i + Z[i] < n) {
            ++ Z[i];
        }
        if (i + Z[i] - 1 > r) {
            r = i + Z[i] - 1;
            l = i;
        }
    }
    Z[0] = n;
}

void modify(int x) {
    while (x <= 27) {
        ++ t[x];
        x += lowbit(x);
    }
}

int query(int x) {
    int ans = 0;
    while (x) {
        ans += t[x];
        x -= lowbit(x);
    }
    return ans;
}

void deal() {
    n = strlen(s);
    memset(pre, 0, sizeof pre);
    memset(nxt, 0, sizeof nxt);
    memset(Z, 0, sizeof Z);
    memset(t, 0, sizeof t);
    all = prefix = suffix = 0;
    exkmp();
    rep (i, 0, n - 1, 1) {
        if (i + Z[i] == n) {
            -- Z[i];
        }
    }
    rep (i, 0, n - 1, 1) {
        ++ nxt[s[i] - 'a'];
    }
    rep (i, 0, 25, 1) {
        if (nxt[i] & 1) {
            ++ all;
        }
    }
    suffix = all;
    ll ans = 0;
    rep (i, 0, n - 1, 1) {
        if (nxt[s[i] - 'a'] & 1) {
            -- suffix;
        } else {
            ++ suffix;
        }
        -- nxt[s[i] - 'a'];
        if (pre[s[i] - 'a'] & 1) {
            -- prefix;
        } else {
            ++ prefix;
        }
        ++ pre[s[i] - 'a'];
        if (i != 0 && i != n - 1) {
            int t = Z[i + 1] / (i + 1) + 1;
            ans += 1ll * (t / 2) * query(all + 1) + 1ll * (t - t / 2) * query(suffix + 1);
        }
        modify(prefix + 1);
    }
    cout << ans << '\n';
}

void solve() {
    T = read<int>();
    while (T --) {
        input();
        deal();
    }
}

int main() {
    solve();
    return 0;
}
posted @ 2023-08-22 08:37  yi_fan0305  阅读(100)  评论(0编辑  收藏  举报