Loading

模板集合(持续更新中)

线段树

// 线段树
namespace Seg_tree {
#define ls (u << 1)
#define rs (u << 1 | 1)
#define mid ((l + r) >> 1)
	
	typedef long long ll;
	const int N = 1e5 + 5;
	using std::max;
	using std::min;
	
	ll val[N << 2], laz[N << 2], maxx[N << 2], minn[N << 2];
	
	template<class T>
	const T& _max(const T& a, const T& b) { // 比较函数
		return a > b ? a : b;
	}
	
	template<class T>
	const T& _min(const T& a, const T& b) { // 比较函数
		return a > b ? b : a;
	}
	
	void pushup(int u) { // 更新信息
		val[u] = val[ls] + val[rs];
		maxx[u] = max(maxx[ls], maxx[rs]);
		minn[u] = min(minn[ls], minn[rs]);
	}
	
	void pushdown(int u, int l, int r) { // 下传标记
		if (!laz[u])	return ;
		laz[ls] += laz[u];
		val[ls] += laz[u] * (mid - l + 1);
		maxx[ls] += laz[u] * (mid - l + 1);
		minn[ls] += laz[u] * (mid - l + 1);
		laz[rs] += laz[u];
		val[rs] += laz[u] * (r - mid);
		maxx[rs] += laz[u] * (r - mid);
		minn[rs] += laz[u] * (r - mid);
		laz[u] = 0;
	}
	
	void build(int u, int l, int r) { // 建树
		laz[u] = 0;
		if (l == r) {
			scanf("%lld", &val[u]);
			maxx[u] = minn[u] = val[u];
			return ;
		}
		build(ls, l, mid);
		build(rs, mid + 1, r);
		pushup(u);
	}
	
	void add(int u, int l, int r, int lr, int rr, ll c) { // 区间加减
		if (lr <= l && r <= rr) {
			laz[u] += c;
			ll tmp = (r - l + 1) * c;
			val[u] += tmp;
			minn[u] += tmp;
			maxx[u] += tmp;
			return ;
		}
		pushdown(u, l, r);
		if (lr <= mid)	add(ls, l, mid, lr, rr, c);
		if (rr > mid)	add(rs, mid + 1, r, lr, rr, c);
		pushup(u);
	}
	
	ll qry(int u, int l, int r, int lr, int rr, ll* g) { // 区间查询,g 为查询的数组名
		if (lr <= l && r <= rr) {
			return g[u];
		}
		pushdown(u, l, r);
		ll ans = 0;
		if (lr <= mid) {
			ans += qry(ls, l, mid, lr, rr, g);
		}
		if (rr > mid) {
			ans += qry(rs, mid + 1, r, lr, rr, g);
		}
		return ans;
	}
}

ST 表

namespace ST_RMQ {
#define MAX 1
#define MIN 0
	
	typedef long long ll;
	const int N = 1e5 + 5;
	using std::max;
	using std::min;
	
	int lg[N];
	ll maxx[N][20], minn[N][20];
	
	template<class T>
	const T& _max(const T& a, const T& b) {
		return a > b ? a : b;
	}
	
	template<class T>
	const T& _min(const T& a, const T& b) {
		return a > b ? b : a;
	}
	
	void pre(int n) { // 预处理 lg
		for (int i = 2; i <= n; ++ i) {
			lg[i] = lg[i >> 1] + 1;
		}
	}
	
	void work(int n) {
		for (int j = 1; j <= lg[n]; ++ j) {
			for (int i = 1; i + (1 << j) - 1 <= n; ++ i) {
				maxx[i][j] = max(maxx[i][j - 1], maxx[i + (1 << j - 1)][j - 1]);
				minn[i][j] = min(minn[i][j - 1], minn[i + (1 << j - 1)][j - 1]);
			}
		}
	}
	
	ll qry(int l, int r, int fg) { // 求最值,fg 为 1 时求最大值,fg 为 2 时求最小值
		int k = lg[r - l + 1];
		if (fg == MAX)	return max(maxx[l][k], maxx[r - (1 << k) + 1][k]);
		if (fg == MIN)	return min(minn[l][k], minn[r - (1 << k) + 1][k]);
		return -1;
	}
}

// 堆
namespace Heap {
	typedef long long ll;
	using std::priority_queue;
	using std::vector;
	using std::queue;
	using std::greater;
	using std::swap;
	const int N = 1e5 + 5;
	
	// 对顶堆
	struct top_heap {
		priority_queue<ll> q1;
		priority_queue<ll, vector<ll>, greater<ll> > q2;
		
		void insert(ll x) { // 插入
			if (q1.empty()) {
				q1.push(x);
				return ;
			}
			if(x > q1.top())	q2.push(x);
			else	q1.push(x);
		}
		
		int K_th(int k) { // 求第 K 大的值
			if (q1.size() + q2.size() < k)	return -1;
			while (q1.size() < k) {
				q1.push(q2.top());
				q2.pop();
			}
			while (q1.size() > k) {
				q2.push(q1.top());
				q1.pop();
			}
			return q1.top();
		}
		
		int pop_K_th(int k) { // 删除第 K 大的值
			if (q1.size() + q2.size() < k)	return -1;
			while (q1.size() < k) {
				q1.push(q2.top());
				q2.pop();
			}
			while (q1.size() > k) {
				q2.push(q1.top());
				q1.pop();
			}
			int u = q1.top();
			q1.pop();
			return u;
		}
	};

	// 可删除堆
	struct del_heap {
		priority_queue<ll, vector<ll>, greater<ll> > q1, q2;
		
		void insert(ll x) { // 插入
			q1.push(x);
		}
		
		void del(ll x) { // 删除
			q2.push(x);
		}
		
		ll top() { // 取堆顶
			while(!q2.empty() && !q1.empty() && q2.top() == q1.top()) {
				q1.pop(), q2.pop();
			}
			return q1.top();
		}
	};

	// 左偏树(小根堆)
	struct leftist_tree {
		int lson[N], rson[N], fa[N], fat[N];
		ll val[N], dist[N];
		
		int merge(int x, int y) { // 合并
			if (!x || !y) {
				return x | y;
			}
			if (val[x] > val[y] || (val[x] == val[y] && x > y))
				swap(x, y);
			rson[x] = merge(rson[x], y);
			fat[rson[x]] = fa[rson[x]] = x;
			if (dist[lson[x]] < dist[rson[x]])
				swap(lson[x], rson[x]);
			dist[x] = dist[rson[x]] + 1;
			return x;
		}
		
		int find(int u) { // 查询堆顶的元素的标号
			return (fat[u] == u || fat[u] == 0) ? u : fat[u] = find(fat[u]);
		}
		
		void earse(int u) { // 删除任意一点
			int tmp = merge(lson[u], rson[u]), fu = fa[u];
			fat[tmp] = fa[tmp] = fu;
			fat[u] = fa[u] = tmp;
			lson[fu] == u ? lson[fu] = tmp : rson[fu] = tmp;
			while (fu) {
				if (dist[lson[fu]] < dist[rson[fu]])
					swap(lson[fu], rson[fu]);
				if (dist[fu] == dist[rson[fu]] + 1)
					return ;
				dist[fu] = dist[rson[fu]] + 1;
				fu = fa[fu];
			}
		}
		
		ll top(int u) { // 查询 u 点所在堆的堆顶元素
			int g = find(u);
			return val[g];
		}
		
		void pop(int u) { // 弹出 u 点所在对的堆顶元素
			int g = find(u);
			earse(g);
		}
		
		int build(int n) { // 建树
			queue<int> q;
			for (int i = 1; i <= n; ++ i) {
				q.push(i);
			}
			int x, y, z;
			while (q.size() > 1) {
				x = q.front(), q.pop();
				y = q.front(), q.pop();
				z = merge(x, y), q.push(z);
			}
			return q.front();
		}
	};
}

平衡树(FHQ)

// 平衡树(FHQ)
namespace Balance_tree {
#define lc ch[u][0]
#define rc ch[u][1]
	
	const int N = 1e5 + 5;
	
	struct FHQ {
		int cnt, rt, top;
		int ch[N][2], siz[N], val[N], pai[N], rub[N];
		
		void pushup(int u) {
			siz[u] = siz[lc] + siz[rc] + 1;
			return ;
		}
		
		int New(int c) {
			int u;
			if (!top) {
				u = ++ cnt;
			}
			else {
				u = rub[top];
				top --;
			}
			val[u] = c;
			siz[u] = 1;
			pai[u] = rand();
			lc = 0, rc = 0;
			return u;
		}
		
		void split1(int u, int c, int &x, int &y) { // 按照权值分裂
			if (u == 0) {
				x = y = 0;
				return ;
			}
			if (val[u] <= c) {
				x = u;
				split1(rc, c, rc, y);
			}
			else {
				y = u;
				split1(lc, c, x, lc);
			}
			pushup(u);
		}
		
		void split2(int u, int k, int &x, int &y) { // 按照子树大小分裂
			if (u == 0) {
				x = y = 0;
				return ;
			}
			pushup(u);
			if (siz[lc] + 1 <= k) {
				x = u;
				split2(rc, k - siz[lc] - 1, rc, y);
			}
			else {
				y = u;
				split2(lc, k, x, lc);
			}
			pushup(u);
		}
		
		int merge(int x, int y) {
			if (!x || !y) {
				return x + y;
			}
			if (pai[x] < pai[y]) {
				ch[x][1] = merge(ch[x][1], y);
				pushup(x);
				return x;
			}
			else {
				ch[y][0] = merge(x, ch[y][0]);
				pushup(y);
				return y;
			}
		}
		
		void insert(int c) {
			int t1, t2;
			split1(rt, c, t1, t2);
			rt = merge(merge(t1, New(c)), t2);
		}
		
		void del(int c) {
			int t1, t2, t3;
			split1(rt, c, t1, t2);
			split1(t1, c - 1, t1, t3);
			rub[++ top] = t3;
			t3 = merge(ch[t3][0], ch[t3][1]);
			rt = merge(merge(t1, t3), t2);
		}
		
		int ranking(int c) {
			int t1, t2, k;
			split1(rt, c - 1, t1, t2);
			k = siz[t1] + 1;
			rt = merge(t1, t2);
			return k;
		}
		
		int K_th(int k) {
			int t1, t2, t3, c;
			split2(rt, k, t1, t2);
			split2(t1, k - 1, t1, t3);
			c = val[t3];
			rt = merge(merge(t1, t3), t2);
			return c;
		}
		
		int pre(int c) {
			int t1, t2, t3, k;
			split1(rt, c - 1, t1, t2);
			split2(t1, siz[t1] - 1, t1, t3);
			k = val[t3];
			rt = merge(merge(t1, t3), t2);
			return k;
		}
		
		int nxt(int c) {
			int t1, t2, t3, k;
			split1(rt, c, t1, t2);
			split2(t2, 1, t2, t3);
			k = val[t2];
			rt = merge(t1, merge(t2, t3));
			return k;
		}
	};
}

可持久化数据结构

namespace Persistent { // 可持久化数据结构
#define mid ((l + r) >> 1)
	
	const int N = 1e6 + 5;
	const int M = (N << 5) + 10;
	
	struct persistent_arr { // 可持久化数组
		
		int rot;
		
		struct node {
			int ls, rs, val;
		} nod[(N << 5) + 10];
		
		inline int newnod(int u) { // 创建新节点
			++ rot;
			nod[rot] = nod[u];
			return rot;
		}
		
		int build(int l, int r) { // 建树
			int u = ++ rot;
			if (l == r) {
				scanf("%d", &nod[u].val);
				return u;
			}
			nod[u].ls = build(l, mid);
			nod[u].rs = build(mid + 1, r);
			return u;
		}
		
		int modify(int u, int l, int r, int pos, int c) { // 修改
			u = newnod(u);
			if (l == r) {
				nod[u].val = c;
			}
			else {
				if (pos <= mid) {
					nod[u].ls = modify(nod[u].ls, l, mid, pos, c);
				}
				else {
					nod[u].rs = modify(nod[u].rs, mid + 1, r, pos, c);
				}
			}
			return u;
		}
		
		int query(int u, int l, int r, int pos) { // 查询
			if (l == r) {
				return nod[u].val;
			}
			else {
				if (pos <= mid) {
					return query(nod[u].ls, l, mid, pos);
				}
				else {
					return query(nod[u].rs, mid + 1, r, pos);
				}
			}
		}
	};
	
	struct persistent_seg {
		int rot;
		
		struct node {
			int l, r, val;
		} nod[M];
		
		inline int newnod(int u) { // 创建新节点
			++ rot;
			nod[rot] = nod[u];
			nod[rot].val = nod[u].val + 1;
			return rot;
		}
		
		int build(int l, int r) { // 建树
			int u = ++ rot;
			if (l == r) {
				return u;
			}
			nod[u].l = build(l, mid);
			nod[u].r = build(mid + 1, r);
			return u;
		}
		
		int add(int u, int l, int r, int pos) { // 插入新节点
			u = newnod(u);
			if (l == r)	return u;
			if (pos <= mid) {
				nod[u].l = add(nod[u].l, l, mid, pos);
			}
			else {
				nod[u].r = add(nod[u].r, mid + 1, r, pos);
			}
			return u;
		}
		
		int query(int l, int r, int lr, int rr, int k) { // 查找第 k 大的值
			int x = nod[nod[rr].l].val - nod[nod[lr].l].val;
			if (l == r)	return l;
			if (k <= x) {
				return query(l, mid, nod[lr].l, nod[rr].l, k);
			}
			else {
				return query(mid + 1, r, nod[lr].r, nod[rr].r, k - x);
			}
		}
	};
}
posted @ 2023-05-04 20:11  yi_fan0305  阅读(46)  评论(0编辑  收藏  举报