点云法向量计算并存储-小兔子
点云法向量计算并存储-小兔子
# @Description: <Open3D估计法向量,可视化,存储为文件> import open3d as o3d import os path =r'D:\qcc\pythonProject' path = path +r"\bunny.pcd" normalPath = path.replace(".pcd", "_normal.pcd") print(path) print(normalPath) print("Load a pcd point cloud, print it, and render it") pcd = o3d.io.read_point_cloud(path) pcd.paint_uniform_color([0.5, 0.5, 0.5]) # 把所有点渲染为灰色(灰兔子) print(pcd) # 输出点云点的个数 # print(o3d.np.asarray(pcd.points)) # 输出点的三维坐标 o3d.visualization.draw_geometries([pcd], "Open3D origin points", width=800, height=600, left=50, top=50, point_show_normal=False, mesh_show_wireframe=False, mesh_show_back_face=False) print("Downsample the point cloud with a voxel of 0.002") downpcd = pcd.voxel_down_sample(voxel_size=0.002) # 下采样滤波,体素边长为0.002m print(downpcd) o3d.visualization.draw_geometries([downpcd], "Open3D downsample points", width=800, height=600, left=50, top=50, point_show_normal=False, mesh_show_wireframe=False, mesh_show_back_face=False) print("Recompute the normal of the downsampled point cloud") # 混合搜索 KNN搜索 半径搜索 # downpcd.estimate_normals( # search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.01, max_nn=20)) # 计算法线,搜索半径1cm,只考虑邻域内的20个点 downpcd.estimate_normals( search_param=o3d.geometry.KDTreeSearchParamKNN(knn=20)) # 计算法线,只考虑邻域内的20个点 # downpcd.estimate_normals( # search_param=o3d.geometry.KDTreeSearchParamRadius(radius=0.01)) # 计算法线,搜索半径1cm,只考虑邻域内的20个点 o3d.visualization.draw_geometries([downpcd], "Open3D normal estimation", width=800, height=600, left=50, top=50, point_show_normal=True, mesh_show_wireframe=False, mesh_show_back_face=False) # 可视化法线 print("Print a normal vector of the 0th point") print(downpcd.normals[0]) # 输出0点的法向量值 print("Print the normal vectors of the first 10 points") #print(o3d.np.asarray(downpcd.normals)[:10, :]) # 输出前10个点的法向量 # std::vector<Eigen::Vector3d> with 381 elements. 转换为nparry 以打印访问 # normals = o3d.np.asarray(downpcd.normals) # print(normals) # 可视化法向量的点,并存储法向量点到文件 normal_point = o3d.utility.Vector3dVector(downpcd.normals) normals = o3d.geometry.PointCloud() normals.points = normal_point normals.paint_uniform_color((0, 1, 0)) # 点云法向量的点都以绿色显示 o3d.visualization.draw_geometries([pcd, normals], "Open3D noramls points", width=800, height=600, left=50, top=50, point_show_normal=False, mesh_show_wireframe=False, mesh_show_back_face=False) o3d.io.write_point_cloud(normalPath, normals)
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
2020-11-21 matlab读取txt文本文件
2019-11-21 Open3D-PointNet2-Semantic3D-master的运行
2019-11-21 Python文件读取中:f.seek(0)和f.seek(0,0)有什么区别
2019-11-21 FLOPS
2019-11-21 ubuntu 中wget (下载)命令用法
2019-11-21 ubuntu下的mv命令
2018-11-21 c++的最小整数和最大整数