numpy.dot()函数
https://blog.csdn.net/u012149181/article/details/78913416
今天学习到numpy基本的运算方法,遇到了一个让我比较难理解的问题。就是dot函数是如何对矩阵进行运算的。
一、dot()的使用
参考文档:https://docs.scipy.org/doc/numpy/reference/generated/numpy.dot.html
dot()返回的是两个数组的点积(dot product)
1.如果处理的是一维数组,则得到的是两数组的內积(顺便去补一下数学知识)
In : d = np.arange(0,9)
Out: array([0, 1, 2, 3, 4, 5, 6, 7, 8])
In : e = d[::-1]
Out: array([8, 7, 6, 5, 4, 3, 2, 1, 0])
In : np.dot(d,e)
Out: 84
2.如果是二维数组(矩阵)之间的运算,则得到的是矩阵积(mastrix product)。
In : a = np.arange(1,5).reshape(2,2)
Out:
array([[1, 2],
[3, 4]])
In : b = np.arange(5,9).reshape(2,2)
Out: array([[5, 6],
[7, 8]])
In : np.dot(a,b)
Out:
array([[19, 22],
[43, 50]])
所得到的数组中的每个元素为,第一个矩阵中与该元素行号相同的元素与第二个矩阵与该元素列号相同的元素,两两相乘后再求和。
这句话有点难理解,但是这句话里面没有哪个字是多余的。结合下图理解这句话。
3.dot()函数可以通过numpy库调用,也可以由数组实例对象进行调用。a.dot(b) 与 np.dot(a,b)效果相同。
矩阵积计算不遵循交换律,np.dot(a,b) 和 np.dot(b,a) 得到的结果是不一样的。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· winform 绘制太阳,地球,月球 运作规律
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
2020-11-30 硬盘测试
2020-11-30 matlab quiver()画箭头的函数
2019-11-30 Deformable Convolutional Networks
2019-11-30 卷积核filter和kernal的区别
2019-11-30 木心/《眉目》
2018-11-30 高斯投影,高斯-克吕格投影、UTM投影
2018-11-30 cad快捷键定制