随笔 - 1762  文章 - 0  评论 - 109  阅读 - 431万

KPConv针对Modelnet40的分类

1.

训练样本airplane_0001.txt的可视化:

 

 飞机尺度:

物体类别与对应标签:

 

2.

对训练样本进行降采样:

体素法降采样,降采样的网络大小设置为0.02m.在pycharm下面的Console控制台窗口输入以下命令,对降采样后的数据存入.txt文本文件,然后进行可视化。

np.savetxt("airplane_001.txt",points,fmt="%.8f", delimiter=',')

 

 

可以看到,降采样后的点云分布仍然很均匀,尺度稍微变小了一点。

降采样之后,点云的数量变化是:10000个---->5979个

下面这个是降采样之后,训练集中每个物体对象点云的数量,降采样之后,点云的坐标不是原来的点云的坐标了。

 这个是降采样之后,测试集中每个物体对象点云的数量,降采样之前每个对象的点云数量都是10000:

 3.

对训练集中降采样之后的点云数量进行一个排序:

 

 ...

 

 

 

 

 

 

posted on   一杯明月  阅读(2712)  评论(4编辑  收藏  举报
编辑推荐:
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
阅读排行:
· winform 绘制太阳,地球,月球 运作规律
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
历史上的今天:
2018-12-05 函数指针
< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

点击右上角即可分享
微信分享提示