随笔 - 1762  文章 - 0  评论 - 109  阅读 - 431万

深度学习accuracy

 

accuracy=(1+3)/(1+2+3+4),即在所有样本(例子)中做出正确预测的的比例,或者说正确预测的样本数占总预测样本数的比值。

precision=(1)/(1+2),指的是正确预测的正样本数占所有预测为正样本的数量的比值,也就是说所有预测为样本的样本中有多少是真正的样本。从这我们可以看出,accuracy考虑全部样本,而precision只关注预测为正样本的部分。

recall=(1)/(1+4),正确预测的样本数占真实样本总数的比值,也就是我能从这些样本中能够正确找出多少个正样本。

F_score=2/(1/precision+1/recall),相当于precision和recall的调和平均,用意是要参考两个指标。从公式我们可以看出,recall和precision任何一个数值减小,F-score都会减小,反之,亦然。

 

 

 

 

 

 

 

 

posted on   一杯明月  阅读(1870)  评论(0编辑  收藏  举报
编辑推荐:
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
阅读排行:
· winform 绘制太阳,地球,月球 运作规律
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
历史上的今天:
2018-11-05 python的正则表达式
2018-11-05 python列表推导式的if-else
2018-11-05 python返回列表中指定内容的索引
< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

点击右上角即可分享
微信分享提示