#include

1001 害死人不偿命的(3n+1)猜想 (15)(15 分)

1001 害死人不偿命的(3n+1)猜想 (15)(15 分)

卡拉兹(Callatz)猜想:

对任何一个自然数n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把(3n+1)砍掉一半。这样一直反复砍下去,最后一定在某一步得到n=1。卡拉兹在1950年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证(3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……

我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过1000的正整数n,简单地数一下,需要多少步(砍几下)才能得到n=1?

输入格式:每个测试输入包含1个测试用例,即给出自然数n的值。

输出格式:输出从n计算到1需要的步数。

输入样例:

3

输出样例:

5

#include <iostream>
#include <algorithm>

using namespace std ; 

int main(){

    int n ; 
    cin >> n ;
    int result = 0 ; 

    while(n!=1){
        result ++ ; 
        if(n%2 == 1){
            n = (3 * n + 1 ) / 2 ; 
        }else {
            n = n / 2 ; 
        }
    }
    cout << result << endl ; 
    return 0 ; 
}

 

 
posted @ 2018-05-29 00:27  0一叶0知秋0  阅读(122)  评论(0编辑  收藏  举报