#include

kuangbin专题一:F题,POJ3126:Prime Path

POJ3126:Prime Path
kuangbin专题一:F题

Description

The ministers of the cabinet were quite upset by the message from the Chief of Security stating that they would all have to change the four-digit room numbers on their offices.
— It is a matter of security to change such things every now and then, to keep the enemy in the dark.
— But look, I have chosen my number 1033 for good reasons. I am the Prime minister, you know!
— I know, so therefore your new number 8179 is also a prime. You will just have to paste four new digits over the four old ones on your office door.
— No, it’s not that simple. Suppose that I change the first digit to an 8, then the number will read 8033 which is not a prime!
— I see, being the prime minister you cannot stand having a non-prime number on your door even for a few seconds.
— Correct! So I must invent a scheme for going from 1033 to 8179 by a path of prime numbers where only one digit is changed from one prime to the next prime.

Now, the minister of finance, who had been eavesdropping, intervened.
— No unnecessary expenditure, please! I happen to know that the price of a digit is one pound.
— Hmm, in that case I need a computer program to minimize the cost. You don't know some very cheap software gurus, do you?
— In fact, I do. You see, there is this programming contest going on... Help the prime minister to find the cheapest prime path between any two given four-digit primes! The first digit must be nonzero, of course. Here is a solution in the case above.
1033
1733
3733
3739
3779
8779
8179
The cost of this solution is 6 pounds. Note that the digit 1 which got pasted over in step 2 can not be reused in the last step – a new 1 must be purchased.

Input

One line with a positive number: the number of test cases (at most 100). Then for each test case, one line with two numbers separated by a blank. Both numbers are four-digit primes (without leading zeros).

Output

One line for each case, either with a number stating the minimal cost or containing the word Impossible.

Sample Input

3
1033 8179
1373 8017
1033 1033

Sample Output

6
7
0
题意:给定两个素数n和m,要求把n变成m,每次变换时只能变一个数字,即变换后的数与变换前的数只有一个数字不同,
并且要保证变换后的四位数也是素数。求最小的变换次数;如果不能完成变换,输出Impossible。

无论怎么变换,个位数字一定是奇数(个位数字为偶数肯定不是素数),这样枚举个位数字时只需枚举奇数就行;
而且千位数字不能是0。所以可以用广搜,枚举各个数位上的数字,满足要求的数就加入队列,直到变换成功。
因为是广搜,所以一定能保证次数最少。
/*  queue队列:
       
       调用头文件:
           #include<queue>
           using namespace std;
       详细用法(部分):
           queue<Type> k;      ------      定义一个queue的变量(定义时已经初始化)      例如: queue<int> k;
           k.empty()      ------      查看是否为空范例,是的话返回1,不是返回0
           k.push(i)      ------      从已有元素后面增加元素i(队伍大小不预设)
           k.pop()      ------      清除第一个元素
           k.front()      ------      显示第一个元素      例如n = k.front();
           k.back()      ------      显示最后一个元素
           k.size()      ------      输出现有元素的个数
*/
#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
using namespace std ; 

#define maxn 100000 
#define LL long long 
bool prime[maxn] ; 
bool visit[maxn] ;  
int pre[maxn] ; 
int num1 , num2 ; 

struct node {
    int num ; 
    int step ; 
};
node st ; 
int result ; 

void init(){//线性筛法(O(n)) 
    for(int i=2 ; i<maxn ; i++){
        prime[i] = true ; 
    }
    prime[0] = prime[1] = false ; 
    int total = 0 ; 
    for(int i=2 ; i< maxn ; i++){
        if(prime[i]){
            pre[total ++ ] = i ; 
        } 
        for(int j = 0 ; j< total && i*pre[j] < maxn ; j++ ){
            prime[i * pre[j]] = false ; 
            if(i%pre[j] == 0 ){
                break ; 
            }
        }
    } 
}

void BFS(){
    queue<node> Q ; 
    Q.push(st) ; 
    while(!Q.empty()){
        node q = Q.front() ; 
        Q.pop() ; 
        if(q.num == num2){
            printf("%d\n" , q.step) ; 
            return;
        }
        node turn ; 
        // 个位
        for(int i=1 ; i<=9 ; i+=2){
            turn.num = q.num/10*10 + i ; 
            turn.step = q.step + 1 ; 
            if(!visit[turn.num]&&prime[turn.num]){
                visit[turn.num] = 1 ; 
                Q.push(turn) ; 
            }
        } 
        // 十位
        for(int i=0 ; i<=9 ; i++){
            turn.num = q.num/100*100 + q.num%10 + i *10 ; 
            turn.step = q.step + 1 ; 
            if(!visit[turn.num]&&prime[turn.num]){
                visit[turn.num] = 1 ; 
                Q.push(turn) ; 
            }
        } 
        // 百位
        for(int i=0 ; i<=9 ; i++){
            turn.num = q.num/1000*1000 + q.num % 100 + i * 100 ; 
            turn.step = q.step + 1 ; 
            if(!visit[turn.num]&&prime[turn.num]){
                visit[turn.num] = 1 ; 
                Q.push(turn) ; 
            }
        } 
        // 千位
        for(int i=1 ; i<=9 ; i++){
            turn.num =  q.num % 1000 + i * 1000 ; 
            turn.step = q.step + 1 ; 
            if(!visit[turn.num]&&prime[turn.num]){
                visit[turn.num] = 1 ; 
                Q.push(turn) ; 
            }
        } 
    }
    printf("Impossible\n") ;//失误之下 发现POJ的这道题  没有样例要求输出 Impossible 
    return;
}

int main(){
    init() ; 
    int t ; 
    scanf("%d" , &t) ; 
    while(t--){
        scanf("%d %d" , &num1 , &num2) ; 
        st.num = num1 ; 
        st.step = 0 ; 
        result = 0 ; 
        memset(visit , 0 , sizeof(visit)) ; 
        visit[num1] = 1 ; 
        
        BFS() ; 
    }
    return 0 ; 
} 

 

posted @ 2017-10-08 20:43  0一叶0知秋0  阅读(248)  评论(0编辑  收藏  举报