欢迎访问yhm138的博客园博客, 你可以通过 [RSS] 的方式持续关注博客更新

MyAvatar

yhm138

HelloWorld!

2024年中国科学技术大学少创班一试数学题 Mathematica解答

我对了下答案,基本上没问题。

题目地址

https://app.gaokaozhitongche.com/news/h/E2Jbr6R2
https://www.zizzs.com/gk/shitiku/154255.html

答案地址

https://www.zizzs.com/gk/shitiku/154255_6.html \(\color{red}{\text{看了一下,他给的答案基本都是对的。第一题他没有化简到不可约分数。}}\)

1

\(\{ 1,2,\cdots ,9 \}\)中选取三个不同的数,从大到小拼成一个三位数\(X\),再从\(\{ 1,2,\cdots, 8 \}\)中选取三个不同的数,从大到小拼成一个三位数\(Y\),求:\(X>Y\)的概率?

Clear["Global`*"];
leftNumbers = 
 Subsets[Range[9, 1, -1], {3}] // 
  Map[ToExpression@StringJoin[Map[ToString, #]] &, #] &
rightNumbers = 
 Subsets[Range[8, 1, -1], {3}] // 
  Map[ToExpression@StringJoin[Map[ToString, #]] &, #] &
allTuples = Tuples[{leftNumbers, rightNumbers}];
Count[allTuples, _?(#[[1]] > #[[2]] &)]/Length[allTuples]

\[\frac{37}{56} \]

2

说理题。拿迭代函数系统和极限那一套说清楚就行。


\(x\geq -1\)\(x\in \mathbb{R}\),令\(a_1=\sqrt{2x+3},\quad a_{n+1}=\sqrt{2a_n+3}\),试求使数列\(\{a_n\}\)中有无穷多个正整数的\(x\)的全部取值。

x = 3;
RecurrenceTable[{a[n + 1] == Sqrt[2*a[n] + 3], a[1] == Sqrt[2 x + 3]},
  a[n], {n, 1, 10}]

要求无穷多个正整数,那么肯定

对递推关系,从后面往前推啊。(这个递推映射又不是【非单射的】,逆函数(只有1种)很容易写啊)

f[x_] := (x^2 - 3)/2;
Table[NestList[f, x, 5], {x, 0, 20}]

\(x=3\)满足要求。

其他看了下,都不符合要求。

可以说明NestList为{3,3,3,3,3...}无穷循坏才是唯一可行的构造。

Clear[x];
Reduce[(x^2 - 3)/2 > x, x, Reals] 
(* x < -1 || x > 3 *)

NestList初始元素为0,1,2,3的情况如下,只有NestList初始元素为3的那个可行。

NestList初始元素为1的情况指示我们\(x=1\)\(x=-1\)可能是可行的?带入正向迭代关系发现实际不行。

\[\left\{0,-\frac{3}{2},-\frac{3}{8},-\frac{183}{128},-\frac{15663}{32768},-\frac{2975895903, \cdots}{2147483648}\right\},\{1,-1,-1,-1,-1,-1, \cdots \},\left\{2,\frac{1}{2},-\frac{11}{8},-\frac{71}{128},-\frac{44111}{32768},-\frac{1275445151}{2147483648} , \cdots \right\},\{3,3,3,3,3,3, \cdots \} \]

NestList初始元素为4,5,6,...的情况都不行啊,

综合以上讨论,只有\(x=3\)满足要求。

3

回忆版试题-版本1

求所有实数\(a\),使得\(|x^2+ax+1|\geq |x+1|\)\(x\in \mathbb{R}\)上恒成立。

Reduce[Abs[x^2 + a*x + 1] >= Abs[x + 1], x, Reals] // 
 Column[List @@ #] &


Manipulate[
 Plot[Abs[x^2 + a*x + 1] - Abs[x + 1] , {x, -100, 100}], {a, -100, 
  100}]

如果是该版本试题,Reduce得到答案是\(a=1\)

回忆版试题-版本2

求所有实数\(a\),使得\(|x^2+ax+2|\geq |x+1|\)\(x\in \mathbb{R}\)上恒成立。

Reduce[Abs[x^2 + a*x + 2] >= Abs[x + 1], x, Reals] // 
 Column[List @@ #] &


Manipulate[
 Plot[Abs[x^2 + a*x + 2] - Abs[x + 1] , {x, -100, 100}], {a, -100, 
  100}]

如果是该版本试题,Reduce得到答案是\(-1\leq a\leq 2 \sqrt{3}-1\)

4

求所有2024次多项式\(f(x)\),使得\(f(x^2)=f(x)\cdot f(x+2)\)

Clear["Global`*"];
m = 10;
polynomial[x_] := Sum[Subscript[a, n]*x^n, {n, 0, m}];
lhs = polynomial[x^2] == polynomial[x]*polynomial[x + 2] // Expand // 
    SubtractSides // Part[#, 1] &;
Reduce[CoefficientList[lhs, x] == 0, 
  Table[Subscript[a, n], {n, 0, m}]] // Column[List @@ #] &

如果要求系数都是整数,也可以做一下。

Clear["Global`*"];
m = 10;
polynomial[x_] := Sum[Subscript[a, n]*x^n, {n, 0, m}];
lhs = polynomial[x^2] == polynomial[x]*polynomial[x + 2] // Expand // 
    SubtractSides // Part[#, 1] &;
Reduce[CoefficientList[lhs, x] == 0, 
  Table[Subscript[a, n], {n, 0, m}], Integers] // Column[List @@ #] &

\[0 \\ 1 \\ -1+1x \\ 1-2x+1x^2 = (x-1)^2 \\ -1+3x-3x^2+1x^3 = (x-1)^3 \\ x^4-4 x^3+6 x^2-4 x+1 = (x-1)^4 \\ x^5-5 x^4+10 x^3-10 x^2+5 x-1 = (x-1)^5 \\ x^6-6 x^5+15 x^4-20 x^3+15 x^2-6 x+1 = (x-1)^6 \\ x^7-7 x^6+21 x^5-35 x^4+35 x^3-21 x^2+7 x-1 = (x-1)^7 \\ \cdots \]

5

复数\(|z_1|=|z_2|=\cdots, =|z_n|=1\)\(z_1+z_2+\cdots +z_n=n-2+ 1i\),其中\(n\geq 2024, n\in \mathbb{Z}\),求\(\Re (z_1)\)的最小值。

首先,\(\Re (z_1)\)取不到\(-1\)
如果\(\Re (z_1)= -1\),因为\(|z_1|=1\),所以\(z_1=-1\)。那么\(z_2+\cdots +z_n=n-1+ 1i\),满足不了。

尝试转化为优化问题做一下。

n=4的时候最优解可以到-0.931662479 !!这个应该没有什么争议,我用Mathematica和大部分非线性优化求解器都给出这个结果 !!

和别人给出的解析解答案\(\frac{-2 n^2+9 n-\sqrt{4 n-5}-10}{2 \left(n^2-4 n+5\right)}\)也一致 (-2 n^2 + 9 n - 10 - Sqrt[4 n - 5])/(2*(n^2 - 4 n + 5)) /. {n -> 4} // N

solver \ n= 4 100 101 2024
Analytical solution -0.931662 -0.995829 -0.995867 -0.999763
Mathematica -0.931662479 -0.995833 -0.995871
CONOPT -0.931662479 -0.9957903145 -0.9957903137 -0.9997414751
LOQO -0.9316624793 -0.9995553546 -1 -0.9997758303
Ipopt -0.931662 -0.995829 -9.9586691411747985e-01 0.0604244
Gurobi -0.931662479 -0.9999406579
OCTERACT -0.931662 -0.995539 -0.995867 -0.999763
Knitro -9.11324841790525e-01 -9.93555728237769e-01 6.86322158040905e-08 -0.9990907031

本题答案(\(n=2024\)的情况)应该是-0.999763,OCTERACT在\(n=2024\)给出的结果也是-0.999763。
看了一下OCTERACT对于其他\(n\)的结果,可以说OCTERACT给出的数值结果是和此解析结果最接近的。

Mathematica求解优化问题

Clear["Global`*"];
ansList = {};
For[n = 3, n <= 20, n++,(*Change this value to any positive integer*)
  xSymbols = Array[Symbol["x" <> ToString@#] &, n];
  ySymbols = Array[Symbol["y" <> ToString@#] &, n];
  
  (*Generating the constraints for each x_i and y_i to be on the unit \
circle*)
  
  unitCircleConstraints = 
   Table[xSymbols[[i]]^2 + ySymbols[[i]]^2 == 1, {i, 1, n}];
  
  (*Including other constraints in your original problem*)
  
  otherConstraints = {Total[xSymbols] == n - 2, 
    Total[ySymbols] == 1};
  
  (*Combining all constraints*)
  
  constraints = Join[unitCircleConstraints, otherConstraints];
  
  (*Solving the minimization problem*)
  
  solution = 
   NMinimize[{First[xSymbols], constraints}, Join[xSymbols, ySymbols]];
  AppendTo[ansList, solution[[1]]];
  
  Print["n=", n, " sol=", solution];];
ListPlot[ansList]

OCTERACT求解优化问题

nco问题求解器我个人建议使用OCTERACT。

可以写一个AMPL .mod文件,在NEOS的OCTERACT/AMPL页面提交一下

param n := 4;

# Define variables
var x {i in 1..n} >= -1, <= 1;  # Variables x_i bounded by the circle's radius
var y {i in 1..n} >= -1, <= 1;  # Variables y_i bounded by the circle's radius

# Define constraints
s.t. UnitCircle {i in 1..n}:
    x[i]^2 + y[i]^2 = 1;         # Each (x_i, y_i) must lie on the unit circle

s.t. SumX:
    sum {i in 1..n} x[i] = n - 2;  # Additional constraint on sum of x_i

s.t. SumY:
    sum {i in 1..n} y[i] = 1;      # Additional constraint on sum of y_i

# Objective function to minimize the first x variable
minimize Objective:
    x[1];

# Solver options (if available and applicable)
option solver_options 'BarHomogeneous=1';

option gurobi_options "NonConvex=2";

# Solve the problem
solve;

# Displaying the results
display x, y;

附录 绘制m个随机单位模复数的和(随机游走)

(*Define the complex numbers z1,z2,z3*)
z1[\[Theta]1_] := Exp[I \[Theta]1];
z2[\[Theta]2_] := Exp[I \[Theta]2];
z3[\[Theta]3_] := Exp[I \[Theta]3];

(*Function to sum the complex numbers*)

totalZ[\[Theta]1_, \[Theta]2_, \[Theta]3_] := 
  z1[\[Theta]1] + z2[\[Theta]2];

(*Generate a 3D plot to visualize the region generated by the sum*)
\
ParametricPlot[
 ReIm[totalZ[\[Theta]1, \[Theta]2, \[Theta]3]], {\[Theta]1, 0, 
  2 Pi}, {\[Theta]2, 0, 2 Pi}, PlotRange -> All, 
 AxesLabel -> {"Re", "Im"}, Mesh -> None, PlotPoints -> 50, 
 PlotLabel -> "Visualization of the Sum z1 + z2"]

ParametricPlot最多就支持2个自变量?这里MonteCarlo画一下

(*Number of random samples*)n = 10000;

m = 3; (* Number of vectors*)

(*Generate random angles*)
thetaList = 
 Array[RandomReal[{0, 2 Pi}, n] &, m];

(*Calculate z1+z2+z3*)
sums = Total[Exp[I #] & /@ thetaList];

(*Plot the results*)
ListPlot[Through[{Re, Im}[#]] & /@ sums, 
 AspectRatio -> 1, PlotRange -> All, PlotStyle -> PointSize[Small], 
 PlotLabels -> {"Real", "Imaginary"}]
posted @ 2024-04-14 10:41  yhm138  阅读(52)  评论(0编辑  收藏  举报