欢迎访问yhm138的博客园博客, 你可以通过 [RSS] 的方式持续关注博客更新

MyAvatar

yhm138

HelloWorld!

PARI/GP编程示例

素材主要来自我在RosettaCode上贡献的PARI/GP代码

推荐一些语法手册

https://math.mit.edu/~brubaker/PARI/PARIrefcard.pdf
https://math.mit.edu/~brubaker/PARI/PARIusers.pdf

default(realprecision, 110)控制实数计算的有效位数

\\ Set the precision to, say, 110 digits
default(realprecision, 110);

\\ Function to display Apéry's constant
my_show_apery_constant(expr, caption) = printf("%s  %.101g\n\n", caption, expr);

\\ Apéry's constant via PARI/GP's zeta function
my_show_apery_constant(zeta(3), "Apéry's constant via PARI/GP's Zeta:\n");

\\ Apéry's constant via reciprocal cubes
my_show_apery_constant(sum(k = 1, 1000, 1/k^3), "Apéry's constant via reciprocal cubes:\n");

\\ Apéry's constant via Markov's summation
my_show_apery_constant((5/2) * sum(k = 1, 158, (-1)^(k - 1) * (k!)^2 / ((2*k)! * k^3)), "Apéry's constant via Markov's summation:\n");

\\ Apéry's constant via Wedeniwski's summation
my_show_apery_constant(1/24 * sum(k = 0, 19, (-1)^k * ((2*k + 1)!)^3 * ((2*k)!)^3 * (k!)^3 * (126392*k^5 + 412708*k^4 + 531578*k^3 + 336367*k^2 + 104000*k + 12463) / (((3*k + 2)!) * ((4*k + 3)!)^3)), "Apéry's constant via Wedeniwski's summation:\n");

default(parisize, "32M");增加PARI/GP申请的栈内存大小

\\ Increase the stack size if necessary
default(parisize, "32M"); \\ Increase to 32MB, adjust if necessary

Riordan(N) = {
    my(a = vector(N));
    a[1] = 1; a[2] = 0; a[3] = 1;
    for (n = 3, N-1,
        a[n+1] = ((n - 1) * (2 * a[n] + 3 * a[n-1]) \ (n + 1)); \\ Integer division
    );
    return(a);
}

rios = Riordan(10000);

\\ Now print the first 32 elements in the desired format
for (i = 1, 32,{
    print1(rios[i]," ")
});
print("")

\\ Print the number of digits for the 1000th and 10000th Riordan numbers
print("The 1,000th Riordan has ", #digits(rios[1000]), " digits.");
print("The 10,000th Riordan has ", #digits(rios[10000]), " digits.");
KlamerRado(N) = {
    my(kr = vector(100 * N), ret = [], idx = 1);
    kr[1] = 1;
    while (idx <= #kr / 3,
        if (kr[idx],
            if (2 * idx + 1 <= #kr, kr[2 * idx + 1] = 1);
            if (3 * idx + 1 <= #kr, kr[3 * idx + 1] = 1);
        );
        idx++;
    );
    for (n = 1, #kr,
        if (kr[n], ret = concat(ret, n));
    );
    ret
}

default(parisize, "1024M");

{
    kr1m = KlamerRado(1000000);

    print("First 100 Klarner-Rado numbers:");
    for (i = 1, 100,
        print1(kr1m[i], " ");
    );
    print();

    print("The 1,000th Klarner-Rado number is ", kr1m[1000]);
    print("The 10,000th Klarner-Rado number is ", kr1m[10000]);
    print("The 100,000th Klarner-Rado number is ", kr1m[100000]);
    print("The 1000,000th Klarner-Rado number is ", kr1m[1000000]);
}

顺序结构、选择结构、循环结构

isDuffinian(n) = (!isprime(n)) && (gcd(n, sigma(n)) == 1);

testDuffinians()=
{
    print("First 50 Duffinian numbers:");
    count = 0; n = 2;
    while(count < 50, 
        if (isDuffinian(n),
            print1(n, " ");
            count++;
        );
        n++;
    );

    print("\n\nFifteen Duffinian triplets:");
    count = 0; n = 2;
    while (count < 15,
        if (isDuffinian(n) && isDuffinian(n + 1) && isDuffinian(n + 2),      
            print(n, " ", n + 1, " ", n + 2);
            count++;
        );
        n++;
    );
}

testDuffinians();
/* Define the Cullen and Woodall number functions */
cullen(n) = n * 2^n + 1;
woodall(n) = n * 2^n - 1;

{
/* Generate the first 20 Cullen and Woodall numbers */
print(vector(20, n, cullen(n)));
print(vector(20, n, woodall(n)));

/* Find the first 5 Cullen prime numbers */
cps = [];
for(i = 1, +oo,
    if(isprime(cullen(i)),
        cps = concat(cps, i);
        if(#cps >= 5, break);
    );
);
print(cps);

/* Find the first 12 Woodall prime numbers */
wps = [];
for(i = 1, +oo,
    if(isprime(woodall(i)),
        wps = concat(wps, i);
        if(#wps >= 12, break);
    );
);
print(wps);
}

for-loop中设置步长

这里,用来分隔函数里的各个入参。
;用来"显式"地表示;前面是一个语句。

\\ 会打印出1,2,3,4,5
for (n = 1, 5,
   ; 
   print(n);
)      
\\ 左闭右闭
left=10;
right=1;
step=-3;
forstep(x=left,right,step,
    print(x)
)

vector或者apply实现map操作

apply(x->x^2, [1,2,3,4])
\\ Define the Jacobsthal function
Jacobsthal(n) = (2^n - (-1)^n) / 3;

\\ Define the JacobsthalLucas function
JacobsthalLucas(n) = 2^n + (-1)^n;

\\ Define the JacobsthalOblong function
JacobsthalOblong(n) = Jacobsthal(n) * Jacobsthal(n + 1);


{
\\ Generate and print Jacobsthal numbers for 0 through 29
print(vector(30, n, Jacobsthal(n-1)));

\\ Generate and print JacobsthalLucas numbers for 0 through 29
print(vector(30, n, JacobsthalLucas(n-1)));

\\ Generate and print JacobsthalOblong numbers for 0 through 19
print(vector(20, n, JacobsthalOblong(n-1)));

\\ Find the first 20 prime numbers in the Jacobsthal sequence
myprimes = [];
i = 0;
while(#myprimes < 40, 
    if(isprime(Jacobsthal(i)), myprimes = concat(myprimes, [i, Jacobsthal(i)])); 
    i++;
);

for (i = 1, #myprimes\2,      print(myprimes[2*i-1] "	" myprimes[2*i]); );
}

格式化打印

printf("floor: %d, field width 3: %3d, with sign: %+3d\n", Pi, 1, 2);
printf("%.5g %.5g %.5g\n",123,123/456,123456789);
printf("%-2.5s:%2.5s:%2.5s\n", "P", "PARI", "PARIGP");
x = 23; y=-1/x; printf("x=%+06.2f y=%+0*.*f\n", x, 6, 2, y);
for (i = 2, 5, printf("%05d\n", 10^i))
for (i = 2, 5, printf("%05d\n", 10^i))
printf("%4d", [1,2,3]);
printf("%5.2f", mathilbert(3));
print("fsasfafaT " 2314  " afdgj")     \\ 直接拼接

switch-case

这里,;的位置要熟背

\\ 最外层的花括号不能省略
{
casename = "place_holder";
r = 2;

if (r == 2, 
    casename = "triangular";
,
r == 3, 
    casename = "tetrahedral";
,
r == 4, 
    casename = "pentatopic";
,
r == 12, 
    casename = "12-simplex";
);

print(casename);
}

for-each one list

V = [[1,2,3,4], [5,6,7,8], [9,10,11,12]]; 
foreach(V, x, my([a,b,c,d] = x); print([a,b,c,d, a+b^2+c^3+d^4]))

我语法没学好,我还是习惯下面这么写:

/* Polytopic number generation function */
polytopic(r, range) = {
    vector(#range, i, binomial(range[i] + r - 1, r))
}

/* Triangular root function */
triangularRoot(x) = {
    (sqrt(8*x + 1) - 1)/2
}

/* Tetrahedral root function */
tetrahedralRoot(x) = {
    N = (3*x + sqrt(9*x^2 - 1/27))^(1/3) + (3*x - sqrt(9*x^2 - 1/27))^(1/3) - 1;
    precision(N, 18)
}

/* Pentatopic root function */
pentatopicRoot(x) = {
    (sqrt(5 + 4*sqrt(24*x + 1)) - 3)/2
}


{
/* Displaying polytopic numbers */
r_sel=[2,3,4,12];
for(i = 1, #r_sel,
    r=r_sel[i];
    casename="place_holder";
    if(r == 2, casename="triangular"; ,
       r == 3, casename="tetrahedral"; ,
       r == 4, casename="pentatopic"; ,
       r == 12, casename="12-simplex";
     );
    printf("\nFirst 30 %s numbers:\n %s\n" , Str(casename) , Str(polytopic(r, [0..29])) )
);

/* Displaying roots of specific numbers */
nums = [7140, 21408696, 26728085384, 14545501785001];
for(i = 1, #nums,
    n = nums[i];
    printf("\nRoots of %s:\n", Str(n));
    printf("   triangular-root: %s\n", Str(triangularRoot(n)));
    printf("   tetrahedral-root: %s\n", Str(tetrahedralRoot(n)));
    printf("   pentatopic-root: %s\n",  Str(pentatopicRoot(n)))
);
}

应该没有布尔类型

官方文档里说

Any nonzero value is interpreted as true and any zero as false (this includes empty vectors or matrices).

我这里直接用0,1了。

chowla(n) = {
    if (n < 1, error("Chowla function argument must be positive"));
    if (n < 4, return(0));
    my(divs = divisors(n));
    sum(i=1, #divs, divs[i]) - n - 1;
}

\\ Function to count Chowla numbers
countchowlas(n, asperfect = 1, verbose = 1) = {
    my(count = 0, chow, i);
    for (i = 2, n,
        chow = chowla(i);
        if ( (asperfect && (chow == i - 1)) || ((!asperfect) && (chow == 0)),
            count++;
            if (verbose, print("The number " i " is " if (asperfect, "perfect.", "prime.")));
        );
    );
    count;
}

\\ Main execution block
{
    print("The first 37 chowla numbers are:");
    for (i = 1, 37, printf("Chowla(%s)  is %s\n", Str(i),  Str(chowla(i)) ) );
    m=100;
    while(m<=10000000, print("The count of the primes up to " m " is " countchowlas(m, 0, 0));  m=m*10);
    print("The count of perfect numbers up to 35,000,000 is " countchowlas(35000000, 1, 1));
}

字符串不能直接取某位置的字符,需要Vecsmall转成数组,然后才能取某位置的元素

对应的逆操作是str = Str(Vec(guessvector));

colors = ["grey", "yellow", "green"];

wordle(answer, guess) =
{
    n = #guess;
    if (#answer != n, error("The words must be of the same length."));
    answervector = Vecsmall(answer);
    guessvector = Vecsmall(guess); \\ Convert guess to a vector of ASCII values
    result = vector(n, i, 0);
    for (i = 1, n,
        if (guessvector[i] == answervector[i],
            answervector[i] = 0;
            result[i] = 2;
        );
    );
    for (i = 1, n,
        c = guessvector[i];
        for (j = 1, n,
            if (answervector[j] == c,
                answervector[j] = 0;
                result[i] = 1;
                break;
            );
        );
    );
    result;
}

{
testpairs = [["ALLOW", "LOLLY"], ["BULLY", "LOLLY"], ["ROBIN", "ALERT"], ["ROBIN", "SONIC"], ["ROBIN", "ROBIN"]];
for (i = 1, #testpairs,
    pair = testpairs[i];
    res = wordle(pair[1], pair[2]);
    res2 = vector(#res, j, colors[res[j] + 1]);
    print(pair[1] " v " pair[2] " => " res " => " res2);
)
}

subString和isSubstring

/* Returns a substring of str starting at s with length n */
ssubstr(str, s = 1, n = 0) = {
    my(vt = Vecsmall(str), ve, vr, vtn = #str, n1);
    if (vtn == 0, return(""));
    if (s < 1 || s > vtn, return(str));
    n1 = vtn - s + 1; if (n == 0, n = n1); if (n > n1, n = n1);
    ve = vector(n, z, z - 1 + s); vr = vecextract(vt, ve); return(Strchr(vr));
}

/* Checks if subStr is a substring of mainStr */
isSubstring(mainStr, subStr) = {
    mainLen = #Vecsmall(mainStr);
    subLen = #Vecsmall(subStr);
    for (startPos = 1, mainLen - subLen + 1,
        if (ssubstr(mainStr, startPos, subLen) == subStr,
            return(1); /* True: subStr found in mainStr */
        )
    );
    return(0); /* False: subStr not found */
}

/* Determines if a number's factors, all > 9, are substrings of its decimal representation */
contains_its_prime_factors_all_over_9(n) = {
    if (n < 10 || isprime(n), return(0)); /* Skip if n < 10 or n is prime */
    strn = Str(n); /* Convert n to string */
    pfacs = factor(n)[, 1]; /* Get unique prime factors of n */
    for (i = 1, #pfacs,
        if (pfacs[i] <= 9, return(0)); /* Skip factors ≤ 9 */
        if (!isSubstring(strn, Str(pfacs[i])), return(0)); /* Check if factor is a substring */
    );
    return(1); /* All checks passed */
}

/* Main loop to find and print numbers meeting the criteria */
{
    found = 0; /* Counter for numbers found */
    for (n = 0, 30 * 10^6, /* Iterate from 0 to 30 million */
        if (contains_its_prime_factors_all_over_9(n),
            found += 1; /* Increment counter if n meets criteria */
            print1(n, " "); /* Print n followed by a space */
            if (found % 10 == 0, print("")); /* Newline every 10 numbers */
            if (found == 20, break); /* Stop after finding 20 numbers */
        );
    );
}

哈希表

mymap = Map();
mapisdefined(mymap,key)
mapget(mymap, key)
mapput(mymap, key, value)

就这些

\\ Initialize an associative array equivalent
pisanos = Map();

\\ Function to calculate the Pisano period for a given prime p
pisano(p) = {
    local(lastn, n, i);
    if (p < 2, return(1));
    if (mapisdefined(pisanos, p), 
        return(mapget(pisanos, p));
    );
    lastn = 0; n = 1;
    for (i = 1, p^2,
        [lastn, n] = [n, Mod(lastn + n, p)];
        if (lastn == 0 && n == 1,
            mapput(pisanos, p, i);
            return(i);
        );
    );
    return(1);
}

\\ Function to calculate Pisano period for a prime p and a power k
pisanoprime(p, k) = {
    my(i = pisano(p));
    if (!isprime(p), error("p must be prime"));
    p^(k-1) * i;
}

\\ Function to calculate Pisano period for a composite number n
pisanotask(n) = {
    my(factors = factor(n));
    \\print("factors=" factors);
    \\apply(x -> print("x=" x), factors);
    lcm( vector(#factors~, i, pisanoprime(factors[i, 1], factors[i, 2])) );
}

{
\\ Print Pisano periods for prime numbers up to 15 with k=2
for (i = 1, 15,
    if (isprime(i),
        print("pisanoPrime["  i  ", 2] = "  pisanoprime(i, 2))
    );
);

\\ Print Pisano periods for prime numbers up to 180 with k=1
for (i = 1, 180,
    if (isprime(i),
        print("pisanoPrime["  i  ", 1] = "  pisanoprime(i, 1))
    );
);

\\ Print Pisano periods for numbers 2 to 180
print("\nPisano[n] for n from 2 to 180:");
print(vector(179, i, pisano(i+1)));

\\ Print Pisano periods using pisanotask for numbers 2 to 180
print("\nPisano[n] using pisanoPrime for n from 2 to 180:");
print(vector(179, i, pisanotask(i+1)));
}

因子分解的后处理

factor得到的是一个Matrix,这里所谓的后处理就是在根据这个Matrix进行计算。

my(factors = factor(n));
\\print("factors=" factors);
\\apply(x -> print("x=" x), factors);
lcm( vector(#factors~, i, pisanoprime(factors[i, 1], factors[i, 2])) );

借助list写法可以同时给多个变量进行赋值

[lastn, n] = [n, Mod(lastn + n, p)]

字符串数组拼接成字符串

homeprimechain(n) = {
    my(chain = [], concat_result, factors, factor_str);
    while (!isprime(n),
        chain = concat(chain, n);  /* Append n to the chain */
        factors = factor(n);
        /* Correctly build the concatenated string of factors */
        factor_str = Str(concat(Vec(vector(#factors~, i,
           concat(Vec(concat(vector(factors[i, 2], j, Str(factors[i, 1])
           )))
        )))));
        concat_result = factor_str;
        \\print("concat_result="  concat_result);
        n = eval(concat_result);  /* Convert string back to number */
    );
    concat(chain, n); /* Append the final prime to the chain */
}

printHPiter(n, numperline = 4) = {
    my(chain = homeprimechain(n), len = #chain, i);
    for (i = 1, len,
        if (i < len,
            print1("HP" , chain[i] , " (" , len - i , ") = " , if(i % numperline == 0, "\n", "")),
            print(chain[i], " is prime.\n\n");
        );
    );
}

{
/* Iterate over a set of numbers */
forstep(i = 2, 20, 1, print("Home Prime chain for ", i, ": "); printHPiter(i););
printHPiter(65);
}

获取某个数域的某个property

\\ https://www.lmfdb.org/NumberField/3.1.45387.1

K = bnfinit(y^3 - 41, 1)
print(K.pol)
print("Degree: " poldegree(K.pol))
print("Signature: " K.sign)
print("Discriminant: " K.disc)
print("Root discriminant: " abs(K.disc)^(1/poldegree(K.pol)))
print("Ramified primes: "  factor(abs(K.disc))[,1]~)
print("Integral basis: " K.zk)
print("Class group and class number: " K.clgp)
print("Fundamental unit: " K.fu)
print("Torsion generator: " K.tu[2])
print("Regulator: " K.reg)


# self-contained Pari/GP code snippet to compute the analytic class number formula
K = bnfinit(x^3 - 41, 1);
print([polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))])

print("Galois group: " polgalois(K.pol))
L = nfsubfields(K); L[2..length(b)]
print("Intermediate fields" L)

\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari: 
p = 7; pfac = idealprimedec(K, p); 
print("Frobenius cycle types: " vector(length(pfac), j, [pfac[j][3], pfac[j][4]]));

反转向量后再切片

Vecrev(b)[j..j+i-1]

遇到factorial()函数返回结果不是整数怎么办?

虽然不知道为什么,但是打表先存一下好像可以解决该问题。

default("parisizemax", "1024M");


\\ Define the function wilsonprimes with a default limit of 11000
wilsonprimes(limit) = {
    \\ Set the default limit if not specified
    my(limit = if(limit, limit, 11000));
    \\ Precompute factorial values up to the limit to save time
    my(facts = vector(limit, i, i!));
    \\ Sign variable for adjustment in the formula
    my(sgn = 1);
    print(" n:  Wilson primes\n--------------------");
    \\ Loop over the specified range (1 to 11 in the original code)
    for(n = 1, 11,
        print1(Str(" ", n, ":  "));
        sgn = -sgn; \\ Toggle the sign
        \\ Loop over all primes up to the limit
        forprime(p = 2, limit,
            \\ Check the Wilson prime condition modified for PARI/GP
            index=1;
            if(n<2,index=1,index=n-1);
            if(p > n && Mod(facts[index] * facts[p - n] - sgn, p^2) == 0,
                print1(Str(p, " "));
            )
        );
        print1("\n");
    );
}

\\ Execute the function with the default limit
wilsonprimes();

bitand以及hammingweight

f(n)=(-1)^hammingweight(bitand(n,n*2));
/* Loop from 0 to 20 and print the result of applying f */
{
for(n = 0, 20, print(n " , " f(n)))
}
posted @ 2024-01-20 20:07  yhm138  阅读(55)  评论(0编辑  收藏  举报