欢迎访问yhm138的博客园博客, 你可以通过 [RSS] 的方式持续关注博客更新

MyAvatar

yhm138

HelloWorld!

【LeetCode 2494. 合并在同一个大厅重叠的活动】[MySQL 用户变量/Pandas]面向过程编程解决区间合并问题

题目地址

https://leetcode.cn/problems/merge-overlapping-events-in-the-same-hall/

MySQL代码

# Write your MySQL query statement below

with t2 as(
    select 
    *

    # ----只需要改动这里的逻辑,其他不要动。注意里面的语句是“顺序执行的”-----------

    -- 如果切换hall_id了,一些变量需要改变
    ,(case when (@prev_hall_id is null or @prev_hall_id<>hall_id) then @farest_interval_start:=start_day end)
    ,(case when (@prev_hall_id is null or @prev_hall_id<>hall_id) then @farest_interval_end:=end_day end)
    ,(case when (@prev_hall_id is null or @prev_hall_id<>hall_id) then @interval_id := @interval_id +1 end)
    

    -- 如果新区间的开始要晚于维护区间的结尾,那么开启新区间
    , (case when @farest_interval_end < start_day then @interval_id := @interval_id +1 else @interval_id end) as interval_id
    , (case when @farest_interval_end < start_day then @farest_interval_start:=start_day end)
    , (case when @farest_interval_end < start_day then @farest_interval_end:=end_day end)
    


    -- 如果新区间的开始不晚于维护区间的结尾,可能会发生区间的合并。由于我们已经按照start_day asc, end_day asc排序了。所以只可能更新@farest_interval_end
    ,(case when @farest_interval_end < start_day then "whatever" else
        (case when @farest_interval_end <= end_day then @farest_interval_end:= end_day end)
    end)
    

    , @farest_interval_start as farest_interval_start
    , @farest_interval_end as farest_interval_end
    , @prev_hall_id := hall_id

    # ----只需要改动这里的逻辑,其他不要动。注意里面的语句是“顺序执行的”-----------

    from (select * from HallEvents order by hall_id asc, start_day asc, end_day asc)  sorted_HallEvents,
    (select @prev_hall_id := null, @farest_interval_start := null, @farest_interval_end := null, @interval_id := 0) vars
)


select hall_id, farest_interval_start as start_day
, farest_interval_end as end_day 
from 
(select *,
row_number() over(partition by interval_id order by start_day desc, end_day desc) as rn
from t2) tmp1
where rn=1
order by  hall_id, start_day, end_day  

等效pandas代码

import pandas as pd

def merge_events(hall_events: pd.DataFrame) -> pd.DataFrame:
    # Sort the DataFrame by hall_id, start_day, and end_day
    sorted_events = hall_events.sort_values(by=['hall_id', 'start_day', 'end_day'])
    
    # Initialize the variables
    prev_hall_id = None
    farest_interval_start = None
    farest_interval_end = None
    interval_id = 0
    intervals = []
    
    # Iterate over the rows of the sorted DataFrame
    for row in sorted_events.itertuples(index=False):
        # Check if we need to reset the variables because the hall_id has changed
        if prev_hall_id is None or prev_hall_id != row.hall_id:
            intervals.append((prev_hall_id, farest_interval_start, farest_interval_end, interval_id))
            farest_interval_start = row.start_day
            farest_interval_end = row.end_day
            interval_id += 1
        # Check if the new interval starts after the farthest interval end
        if row.start_day > farest_interval_end:
            # Append the finished interval to the list
            intervals.append((prev_hall_id, farest_interval_start, farest_interval_end, interval_id))
            # Start a new interval
            farest_interval_start = row.start_day
            farest_interval_end = row.end_day
            interval_id += 1
        # This case is when the new interval overlaps with the farthest interval end
        elif row.end_day > farest_interval_end:
            # Extend the current interval
            farest_interval_end = row.end_day
        
        prev_hall_id=row.hall_id

        print(f"{row.hall_id} {prev_hall_id} {farest_interval_start} {farest_interval_end} {row.start_day} {row.end_day}")
        
    
    # Add the last interval to the list if it exists
    if farest_interval_start is not None and farest_interval_end is not None:
        intervals.append((prev_hall_id, farest_interval_start, farest_interval_end, interval_id))
    


    # Create a DataFrame from the list of intervals
    intervals_df = pd.DataFrame(intervals, columns=['hall_id', 'start_day', 'end_day', 'interval_id'])

    
    # Select the last interval for each interval_id
    final_intervals_df = intervals_df.sort_values(by=['interval_id', 'start_day', 'end_day'], ascending=[True, False, False])
    final_intervals_df = final_intervals_df.drop_duplicates(subset='interval_id', keep='first')
    
    # Sort the final DataFrame and reset the index
    final_intervals_df = final_intervals_df.sort_values(by=['hall_id', 'start_day', 'end_day']).reset_index(drop=True)
    
    # Drop the interval_id column as it's not needed in the final output
    final_intervals_df = final_intervals_df.drop(columns='interval_id').dropna(subset=['hall_id'])
    
    return final_intervals_df
posted @ 2024-01-13 15:16  yhm138  阅读(24)  评论(0编辑  收藏  举报