欢迎访问yhm138的博客园博客, 你可以通过 [RSS] 的方式持续关注博客更新

MyAvatar

yhm138

HelloWorld!

【Leetcode1949. 坚定的友谊】使用MySQL在无向图中寻找{"CompleteTripartite", {1, 1, 3}}这个pattern

题目地址

https://leetcode.cn/problems/strong-friendship/

思路

就是在无向图中寻找这个pattern:

(* Mathematica *)
GraphData[{"CompleteTripartite", {1, 1, 3}}]

SQL写还是比较麻烦。
更加复杂的查询还是建议把数据迁移到neo4j这样的图数据库,然后写Cypher这样的图数据库查询语句。

代码

MySQL代码

with t1 as( -- 图中找到的所有   v1-e1-v2-e2-v3 pattern
    select * from(
        select f1.user2_id as uid , f1.user1_id as one_degree_connected , f2.user1_id as two_degree_connected
        from Friendship f1 
        join Friendship f2 
        on f1.user1_id=f2.user2_id
        union 
        select f1.user2_id as uid , f1.user1_id as one_degree_connected , f2.user2_id as two_degree_connected
        from Friendship f1 
        join Friendship f2 
        on f1.user1_id=f2.user1_id
        union
        select f1.user1_id as uid , f1.user2_id as one_degree_connected , f2.user1_id as two_degree_connected
        from Friendship f1 
        join Friendship f2 
        on f1.user2_id=f2.user2_id
        union 
        select f1.user1_id as uid , f1.user2_id as one_degree_connected , f2.user2_id as two_degree_connected
        from Friendship f1 
        join Friendship f2 
        on f1.user2_id=f2.user1_id
    )tmp1
    where uid<>two_degree_connected and uid<>one_degree_connected and one_degree_connected<>two_degree_connected
    and uid<two_degree_connected
)

select uid as user1_id, two_degree_connected as user2_id
, count(distinct one_degree_connected) as common_friend
from t1

where concat(uid,",",two_degree_connected) in (select concat(user1_id,",",user2_id) from Friendship) -- 坚定的友谊要求这两人还得是朋友

group by user1_id,user2_id
having common_friend>=3
order by user1_id,user2_id,common_friend

逐行翻译为Pandas代码

import pandas as pd
pd.set_option('display.max_rows', 500)
pd.set_option('display.max_columns', 500)
pd.set_option('display.width', 1000)

def strong_friendship(friendship: pd.DataFrame) -> pd.DataFrame:
    # Step 1: Perform self-joins on the dataframe to find the v1-e1-v2-e2-v3 patterns
    # The joins are equivalent to finding one-degree and two-degree connections
    patterns = []

    # f1.user2_id = f2.user2_id
    patterns.append(
        pd.merge(friendship.rename(columns={'user1_id': 'one_degree_connected', 'user2_id': 'uid'}),
                friendship.rename(columns={'user1_id': 'two_degree_connected'}),
                left_on='one_degree_connected', right_on='user2_id')
        [['uid', 'one_degree_connected', 'two_degree_connected']]
    )

    # f1.user1_id = f2.user1_id
    patterns.append(
        pd.merge(friendship.rename(columns={'user2_id': 'one_degree_connected', 'user1_id': 'uid'}),
                friendship.rename(columns={'user2_id': 'two_degree_connected'}),
                left_on='one_degree_connected', right_on='user1_id')
        [['uid', 'one_degree_connected', 'two_degree_connected']]
    )

    # f1.user2_id = f2.user1_id
    patterns.append(
        pd.merge(friendship.rename(columns={'user1_id': 'one_degree_connected', 'user2_id': 'uid'}),
                friendship.rename(columns={'user2_id': 'two_degree_connected'}),
                left_on='one_degree_connected', right_on='user1_id')
        [['uid', 'one_degree_connected', 'two_degree_connected']]
    )

    # f1.user1_id = f2.user2_id
    patterns.append(
        pd.merge(friendship.rename(columns={'user2_id': 'one_degree_connected', 'user1_id': 'uid'}),
                friendship.rename(columns={'user1_id': 'two_degree_connected'}),
                left_on='one_degree_connected', right_on='user2_id')
        [['uid', 'one_degree_connected', 'two_degree_connected']]
    )

    # Step 2: Combine all the patterns into one DataFrame
    all_patterns = pd.concat(patterns)

    # Step 3: Drop duplicates and filter out invalid patterns
    # where uid<>two_degree_connected and uid<>one_degree_connected and one_degree_connected<>two_degree_connected
    # and uid<two_degree_connected
    filtered_patterns = all_patterns.drop_duplicates().query(
        'uid != two_degree_connected and uid != one_degree_connected and one_degree_connected != two_degree_connected and uid < two_degree_connected'
    )

    # print(f"filtered_patterns=\n{filtered_patterns}")
    
    # Group by uid and two_degree_connected and count distinct one_degree_connected
    grouped = filtered_patterns.groupby(['uid', 'two_degree_connected'])['one_degree_connected'].nunique().reset_index()
    grouped.rename(columns={'one_degree_connected': 'common_friend'}, inplace=True)
    
    # Filter pairs that are not friends, in the original dataset
    friendship_pairs = friendship.apply(lambda row: f"{row['user1_id']},{row['user2_id']}", axis=1)
    grouped['pair'] = grouped.apply(lambda row: f"{row['uid']},{row['two_degree_connected']}", axis=1)
    strong_pairs = grouped[grouped['pair'].isin(friendship_pairs)]
    
    # Filter out pairs with less than 3 common friends
    strong_pairs = strong_pairs[strong_pairs['common_friend'] >= 3]
    
    # Select required columns and sort based on the conditions
    result = strong_pairs[['uid', 'two_degree_connected', 'common_friend']].sort_values(by=['uid', 'two_degree_connected', 'common_friend'])
    
    # Rename columns to match the output of the SQL query
    result.rename(columns={'uid': 'user1_id', 'two_degree_connected': 'user2_id'}, inplace=True)
    
    return result

等效Cypher查询(未验证)

MATCH (u1)-[:FRIENDSHIP]-(common_friend)-[:FRIENDSHIP]-(u2),
      (u1)-[:FRIENDSHIP]-(u2)
WHERE NOT (u1)-[:FRIENDSHIP]-(u2)-[:FRIENDSHIP]-(common_friend)
WITH u1, u2, COLLECT(DISTINCT common_friend) AS common_friends
WHERE SIZE(common_friends) >= 3
RETURN u1 AS user1_id, u2 AS user2_id, SIZE(common_friends) AS common_friend_count
ORDER BY user1_id, user2_id, common_friend_count
posted @ 2024-01-13 10:11  yhm138  阅读(11)  评论(0编辑  收藏  举报