欢迎访问yhm138的博客园博客, 你可以通过 [RSS] 的方式持续关注博客更新

MyAvatar

yhm138

HelloWorld!

【LeetCode 2142. 每辆车的乘客人数 I】【LeetCode 2153. 每辆车的乘客人数 II】乘客到站等车,车到站载客。[MySQL 用户变量/Pandas]面向过程编程完成

题目地址

https://leetcode.cn/problems/the-number-of-passengers-in-each-bus-i/description/
https://leetcode.cn/problems/the-number-of-passengers-in-each-bus-ii/description/

思路

将所有关键时刻作为tick。(同一时刻车和人同时到,默认人在车前到)
之后按照tick升序,使用MySQL用户变量编程完成计算逻辑。
输出结果。

代码

题目1

MySQL代码

with ticks as(
    select arrival_time as tick,
    bus_id,
    null as passenger_id,
    "bus" as mytype
    from Buses 
    union 
    select arrival_time as tick,
    null as bus_id,
    passenger_id,
    "passenger" as mytype
    from Passengers
)
,
t1 as(
    select * ,
    row_number() over(order by  tick asc, field(mytype, "passenger","bus")) as rn
    from ticks
)
,
t2  AS (
    SELECT
        #------------只需要修改里面的逻辑就行。注意语句是“顺序执行”的-------------------------------
        *,

        -- 此次事件,可以运走多少人
        (case when mytype="bus" then @station_passenger_number 
          when mytype="passenger" then 0
        end) AS passengers_cnt,

        -- 此次事件后,站台人数
        (case when mytype="bus" then @station_passenger_number := 0 
          when mytype="passenger" then @station_passenger_number := @station_passenger_number + 1 end )
        #-------------只需要修改里面的逻辑就行。注意语句是“顺序执行”的------------------------------
    FROM
        (SELECT @station_passenger_number := 0 ) vars,
        (SELECT * FROM t1 ORDER BY rn  asc ) ordered_ticks
)

select bus_id, cast(passengers_cnt as unsigned int) as passengers_cnt
from t2
where mytype="bus"
order by bus_id asc

等效pandas代码

import pandas as pd

def count_passengers_in_bus(buses: pd.DataFrame, passengers: pd.DataFrame) -> pd.DataFrame:
    # Create a ticks DataFrame by concatenating buses and passengers
    ticks = pd.concat([
        buses.rename(columns={'arrival_time': 'tick'}).assign(mytype='bus'),
        passengers.rename(columns={'arrival_time': 'tick'}).assign(mytype='passenger'),
    ])
    
    # Sort the DataFrame and reset the index to simulate row_number()
    ticks = ticks.sort_values(by=['tick', 'mytype'], ascending=[True, False])
    ticks = ticks.reset_index(drop=True)
    
    # Initialize station passenger number
    station_passenger_number = 0
    
    # Function to apply on each row to calculate passengers_cnt and updated_station_passenger_number
    def process_row(row, station_passenger_number):
        if row['mytype'] == 'bus':
            passengers_on_bus = station_passenger_number
            station_passenger_number -= passengers_on_bus
        elif row['mytype'] == 'passenger':
            passengers_on_bus = 0
            station_passenger_number += 1
        
        return passengers_on_bus, station_passenger_number
    
    # Apply the function to each row
    result_list = []
    for index, row in ticks.iterrows():
        passengers_cnt, station_passenger_number = process_row(row, station_passenger_number)
        result_list.append((row['bus_id'], passengers_cnt))

    # Create a result DataFrame
    result_df = pd.DataFrame(result_list, columns=['bus_id', 'passengers_cnt'])
    
    # Filter out non-bus rows and order by bus_id
    result_df = result_df.dropna(subset=['bus_id']).sort_values(by='bus_id')
    
    # Convert passengers_cnt to unsigned int
    result_df['passengers_cnt'] = result_df['passengers_cnt'].astype('uint')
    
    return result_df

题目2

MySQL代码

with ticks as(
    select arrival_time as tick,
    bus_id,
    null as passenger_id,
    "bus" as mytype,
    capacity as capacity
    from Buses 
    union 
    select arrival_time as tick,
    null as bus_id,
    passenger_id,
    "passenger" as mytype,
    null as capacity
    from Passengers
)
,
t1 as(
    select * ,
    row_number() over(order by  tick asc, field(mytype, "passenger","bus")) as rn
    from ticks
)
,
t2  AS (
    SELECT
        #------------只需要修改里面的逻辑就行。注意语句是“顺序执行”的-------------------------------
        *,
       -- 此次事件,可以运走多少人
        (case when mytype="bus" then (
            case when capacity>=@station_passenger_number then @station_passenger_number 
            else capacity end 
        )
          when mytype="passenger" then 0
        end) AS passengers_cnt,

        -- 此次事件后,站台人数
        (case when mytype="bus" then(
            case when capacity>=@station_passenger_number then  @station_passenger_number := 0 
            else @station_passenger_number := @station_passenger_number-capacity end 
        )
          when mytype="passenger" then @station_passenger_number := @station_passenger_number + 1 end ) updated_station_passenger_number

        
        #-------------只需要修改里面的逻辑就行。注意语句是“顺序执行”的------------------------------
    FROM
        (SELECT @station_passenger_number := 0 ) vars,
        (SELECT * FROM t1 ORDER BY rn  asc ) ordered_ticks
)

select  bus_id , cast(passengers_cnt as unsigned int) as passengers_cnt
from t2
where mytype="bus" 
order by bus_id asc

等效pandas代码

import pandas as pd

def number_of_passengers(buses: pd.DataFrame, passengers: pd.DataFrame) -> pd.DataFrame:
    # Create a ticks DataFrame by concatenating buses and passengers
    ticks = pd.concat([
        buses.rename(columns={'arrival_time': 'tick'}).assign(mytype='bus'),
        passengers.rename(columns={'arrival_time': 'tick'}).assign(mytype='passenger', capacity=pd.NA),
    ])
    
    # Sort the DataFrame and reset the index to simulate row_number()
    ticks = ticks.sort_values(by=['tick', 'mytype'], ascending=[True, False])
    ticks = ticks.reset_index(drop=True)
    
    # Initialize station passenger number
    station_passenger_number = 0
    
    # Function to apply on each row to calculate passengers_cnt and updated_station_passenger_number
    def process_row(row, station_passenger_number):
        if row['mytype'] == 'bus':
            passengers_on_bus = min(row['capacity'], station_passenger_number)
            station_passenger_number -= passengers_on_bus
        elif row['mytype'] == 'passenger':
            passengers_on_bus = 0
            station_passenger_number += 1
        
        return passengers_on_bus, station_passenger_number
    
    # Apply the function to each row
    result_list = []
    for index, row in ticks.iterrows():
        passengers_cnt, station_passenger_number = process_row(row, station_passenger_number)
        result_list.append((row['bus_id'], passengers_cnt))

    # Create a result DataFrame
    result_df = pd.DataFrame(result_list, columns=['bus_id', 'passengers_cnt'])
    
    # Filter out non-bus rows and order by bus_id
    result_df = result_df.dropna(subset=['bus_id']).sort_values(by='bus_id')
    
    # Convert passengers_cnt to unsigned int
    result_df['passengers_cnt'] = result_df['passengers_cnt'].astype('uint')
    
    return result_df
posted @ 2024-01-12 21:42  yhm138  阅读(32)  评论(0编辑  收藏  举报