等价类计数:Burnside引理和Polya定理 阐述和相关例题
本人不确保结果正确性。
类似的题集也很多,比如 https://ac.nowcoder.com/acm/contest/27275#question
都是利用了群论研究计数问题。它们联系密切,可以从Burnside引理推出Polya定理。
记\(c(f)\)是置换\(f\)的圆分解后cycle个数,颜色数\(m\)
其实Polya定理就是说置换\(f\)的不动点个数为\(m^{c(f)}\)。
(因为对每个cycle而言,其中的各元素都涂相同种颜色才会在置换\(f\)作用下保持不变)
Burnside引理
用\(D(a_j)\)表示在置换\(a_j\)下不变的元素的个数。\(L\)表示本质不同的方案数目。
用中文表述Burnside引理的话,
集合\(M\)关于置换群\(G\)的等价类数目,等于\(G\)中每个置换下不动点的个数的算术平均数。
例题1.1
问你长为4的01构成的环有多少种?
对应的置换群是\(\mathbb{Z_4}\)群
记\(a_1\)是恒等变换\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}\),\(a_2\)是\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}\),\(a_3\)是\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}\),\(a_4\)是\(\begin{pmatrix} 1 & 2 & 3 & 4 \\4 & 1 & 2 & 3 \end{pmatrix}\)
在置换\(a_1\)下不变有16种(全部长度为4的01排列共\(2^4种\))
在置换\(a_2\)下不变有2种 0000和1111
在置换\(a_3\)下不变有4种 0000和1111和1010和0101
在置换\(a_4\)下不变有2种 0000和1111
例题1.2
写个特没意思的,现在想知道3-排列集合在\(\mathbb{S_3}\)群下的等价类个数
例题1.3
问你八面体配合物 Mabcdef 的异构体数目。考虑到正八面体和正六面体是对偶多面体,实际这也是正六面体的6个面做六染色(每个颜色都出现一次)的本质不同方案数目。
八面体的旋转群是\(\mathbb{S_4}\)
Polya定理
设\(G\)是\(p\)个对象的一个置换群,用\(m\)种颜色涂染\(p\)个对象,则不同染色方案为:
其中:\(G=\{g_1,g_2,...,g_{s}\}\),\(c(g_i)\)为置换\(g_i\)的循环节数(即置换圆分解后的圆个数)
例题2.1
等边三角形的三个顶点用红绿蓝三种颜色来着色,问你本质不同的方案数。
对应的群是二面体群\(\mathbb{D_3}=\{(1)(2)(3),(123),(321),(1)(23),(2)(13),(3)(12)\}\)
如果想看特定颜色组合情形,用类似母函数的方法替换3为\((r+g+b)\)或\((r^2+g^2+b^2)\)或\((r^3+g^3+b^3)\)
比如\((1)(23)\)对应的就是\((r+g+b)(r^2+g^2+b^2)\)
\((123)\)对应的就是\((r^3+g^3+b^3)\)
例题2.2
正方体的4条体对角线用红蓝两种颜色着色,问你有多少种本质不同的着色方案。
对应的置换群是\(\mathbb{S_4}\),里面的旋转诱导了(4根)体对角线的置换,并且由其确定。
把体对角线看成元素。
\(\mathbb{S_4}\)共有24个置换,
圆分解后圆的个数 | 这样的置换个数 |
---|---|
1 | 6 |
2 | 11 |
3 | 6 |
4 | 1 |
例题2.3
正方体的8个顶点用红蓝两种颜色着色,问你有多少种本质不同的着色方案。
有24个置换,这次把8个点看作元素
置换 | 圆分解后圆个数 | 这样的置换个数 |
---|---|---|
恒等变换 | 8 | 1 |
① | 4 | 6 |
② | 4 | 8 |
③ | 2,4 | 6,3 |
①:对棱中点连线为转轴,对应一个180度旋转,这样的旋转轴有6个(对应6对相对的棱),故6个旋转 | ||
②:体对角线为转轴,对应一个120度或者240度旋转,这样的旋转轴有4个(对应4个主对角线),故8个旋转 | ||
③:对面中心连线为转轴,对应一个90,180,270度旋转,这样的旋转轴有3个(对应3个坐标方向),因此有3x3=9个旋转 |
例题2.4
正方体的6个面用红蓝两种颜色着色,问你有多少种本质不同的着色方案。
有24个置换,这次把6个面看作元素
置换 | 圆分解后圆个数 | 这样的置换个数 |
---|---|---|
恒等变换 | 6 | 1 |
① | 3 | 6 |
② | 2 | 8 |
③ | 3,4 | 6,3 |
例题2.5
正四面体的4个顶点用红蓝两种颜色着色,问你有多少种本质不同的着色方案。
有12个置换:
恒等变换,1个
顶点和对面中点连线为转轴的120°或240°旋转,共8个
对棱中点连线为转轴的180°旋转,共3个
把4个顶点看作元素,
这是交错群\(\mathbb{A_4}=\{(0)(1)(2)(3),(123),(132),(021),(012),(031),(013),(023),(032),(01)(23),(03)(12),(02)(13)\}\)
如果是给正四面体的4个面用红蓝两种颜色着色,答案也是5。把4个面看作元素,群也是交错群\(\mathbb{A_4}\)
我想到了以前算同分异构体的时候,当时还不知道Burnside引理和Polya定理,群论更是一窍不通。。。
我的入门书应该是Nathan Carter的Visual Group Theory
推荐这个github.ioGroupExplorer