随机图论的概率基础
用的是Random Graphs by Béla Bollobás这本书
几乎可以作为任何需要基础概率论知识的学科的前导资料
Random Graphs by Béla Bollobás 书里给出的就是快问快答的形式,这里摘几个较新鲜的。不定期更新
Generic Chernoff bounds
对于正数\(t\),
其中 \(M(t)=\mathbb{E} (e^{tX})\)是随机变量\(X\)的矩生成函数。
概率论中的伯恩斯坦不等式
Bernstein inequalities对随机变量之和偏离其平均值的概率给出了界限。
在最简单的情况下,设\(X_1,\cdots, X_n\)是独立的伯努利随机变量,取值为+1和-1,概率为1/2,则对于每个正的\(\varepsilon\)
概率论中的马尔科夫不等式
if \(X\) is a non-negative r.v. with mean \(\mu\) and \(t\geq0\),then
改写一下就成为Markov's inequality
变换一下形式,也是
概率论中的切比雪夫不等式
Now let \(X\) be a real-valued r.v. with mean \(\mu\) and variance \(\sigma^2\) .if \(d\geq 0\)
改写一下就成为Chebyshev's inequality
the total variation distance
Write \(\mathscr{L}(X)\) for the distribution (law) of a r.v. \(X\). Given integer-valued r.vs \(X\) and \(Y\), the total variation distance of \(\mathscr{L}(X)\) and \(\mathscr{L}(Y)\) is
With a sligt abuse of notation occasionally we write \(d(X,Y)\) or \(d(X,\mathscr{L} (Y))\) instead of \(d(\mathscr{L} (X), \mathscr{L} (Y))\)
r-th factorial moment有什么用
其中\((k)_r\)是下降乘,共\(r\)项
Note that if \(X\) denotes the number of objects in a certain class then \(E_r(X)\) is the expected number of ordered r-tuples of elements of that class.
各种分布之间的联系
给个链接
http://www.math.wm.edu/~leemis/chart/UDR/UDR.html
geometric distribution 几何分布
The binomial distribution describes the number of successes among n trials, with the probability of a success being p. Now consider the number of failures encountered prior to the first success, and denote this by Y.
期望\(q/p\),方差\(q/p^2\),r-th factorial moment \(r!(q/p)^r\)
负二项分布
The number of failures prior to the rth success, say \(Zr\), is said to have a negative binomial distribution
Since Zr is the sum of r independent geometric r.vs,
期望\(rp/q\),方差\(rq/p^2\)
几何分布的连续版本是指数分布(或负指数分布)
一个非负实随机变量\(L\)被认为具有参数\(\lambda> 0\)的指数分布如果
PDF是\(\lambda e^{-\lambda t}\) 期望\(1/\lambda\) 方差\(1/\lambda^2\)
超几何分布 从\(N\)个红蓝双色球中抽取\(n\)个球的颜色统计
The hypergeometric distribution with parameters \(N,R\)and \(n\)\((0<n<N,0<R<N)\)
其中\(s=min\{n,R\}\)
泊松分布
期望\(\lambda>0\)
更新点Erdős–Rényi graph的东西
这里扔几个链接
https://en.wikipedia.org/wiki/Erdős–Rényi_model
Exact probability of random graph being connected
Probability of not having a path between two certain nodes, in a random graph
Prove that: Probability of connectivity of a random graph is increasing with the size of the graph