欢迎访问yhm138的博客园博客, 你可以通过 [RSS] 的方式持续关注博客更新

MyAvatar

yhm138

HelloWorld!

PGF 概率生成函数 Probability generating function

Probability Mass Function 离散随机变量的分布函数PMF

note 前半部分是Analytic Combinatorics by Philippe Flajolet, Robert Sedgewick的
III.2. Bivariate generating functions and probability distributions 这一节的笔记

note 2020-09-17 19:12 增加了《具体数学》里的PGF部分

随机结构举例 two classical combinatorial distributions

PGF Probability generating functions定义

\[p(u)=\sum_{k} \mathbb{P}(X=k) u^{k} \]

当然,能从BGF推到PGF

矩 Moments

The (power) moments are (r阶矩定义)

\[\mathbb{E}\left(X^{r}\right):=\sum_{k} \mathbb{P}\{X=k\} \cdot k^{r} \]

The factorial moment defined for order r as (r order-阶乘矩定义)

\[E[X(X-1) \cdots(X-r+1)] \]

从BGFs 推到 Moments

例题

二项分布的r order-阶乘矩

\[f_{n,k}=\binom{n}{k} \]

先算出OBGF

\[W(z,u)=\frac{1}{1-z-zu} \]

算出对\(u\)\(r\)阶偏导,再取\(u=1\)

\[\left.\frac{\partial^{r}}{\partial u^{r}} W(z, u)\right|_{u=1}=\frac{r ! z^{r}}{(1-2 z)^{r+1}}=\frac{r ! (2z)^{r}}{2^r(1-2 z)^{r+1}} \]

\([z^n]\)反演得到【以\(n\)为变量,\(r\)为参数的某表达式】 (分子)

\[\left.\left[z^{n}\right] \partial_{u}^{r} W(z, u)\right|_{u=1}=\frac{r!}{2^r}\binom{n}{r}2^n \]

\(W(z,1)\)\([z^n]\)反演得到 (分母)

\[\left[z^{n}\right] W(z, 1)=[z^n]\frac{1}{1-2z}=2^n \]

分子分母代入这个公式,得到r order-阶乘矩

\[\mathbb{E}_{\mathcal{A}_{n}}(\chi(\chi-1) \cdots(\chi-r+1))=\frac{\left.\left[z^{n}\right] \partial_{u}^{r} A(z, u)\right|_{u=1}}{\left[z^{n}\right] A(z, 1)}=\frac{r!}{2^r}\binom{n}{r} \]

接着没事可以算算期望,方差

期望(1 order-阶乘矩)

\[\mathbb{E}_{\mathcal{A}_{n}}(\chi)=\frac{n}{2} \]

用公式\(\mathbb{E}_{\mathcal{A}_{n}}\left(\chi^{2}\right)=\frac{\left.\left[z^{n}\right] \partial_{u}^{2} A(z, u)\right|_{u=1}}{\left[z^{n}\right] A(z, 1)}+\frac{\left.\left[z^{n}\right] \partial_{u} A(z, u)\right|_{u=1}}{\left[z^{n}\right] A(z, 1)}\)得到二次矩

\[\mathbb{E}_{\mathcal{A}_{n}}(\chi^2)=\frac{n(n-1)}{4}+\frac{n}{2}=\frac{n(n+1)}{4} \]

使用方差公式\(\mathbb{V}(X)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}\)得到方差

\[\mathbb{V}(\chi)=\frac{n(n+1)}{4}-\frac{n^2}{4}=\frac{n}{4} \]

附录

下面的内容来自《具体数学》中概率生成函数小节

为什么要使用概率生成函数?\(G(z)=\sum \Pr(X=k)z^k\)

一大长处是可以简化均值和方差的计算。(嗯这两个公式挺好证的,把右边展开成和式)

\[Mean(X)=G'(1)\\ Var(X)=G''(1)+G'(1)-G'(1)^2\\ E[X^2]=G''(1)+G'(1) \]

第二大长处是:在许多重要的情形,它们都是\(z\)的比较简单的函数

第三大长处是:概率生成函数的乘积对应于(相互独立的)随机变量之和

然后有意思的是引入了累积量,和多阶矩、r-order阶乘矩很是像,都是数字特征里更加“高次”的东西。

定义\(\kappa_i\)是累积量,由下面的公式给出。由此定义式可见看出,由于【对数变乘为加】以及【概率生成函数的乘积对应于随机变量之和】,所以:独立随机变量之和的所有累积量也可由原来的对应累积量相加得到。

\[\ln G(e^t)=\frac{\kappa_1}{1!}t+\frac{\kappa_2}{2!}t^2+\frac{\kappa_3}{3!}t^3+\frac{\kappa_4}{4!}t^4+\dots \]

定义\(\alpha_m\)是阶乘矩\(\alpha_m=E[X(X-1) \cdots(X-m+1)]\)

定义\(\mu_m\)\(m\)阶矩,\(\mu_m=E[X^m]\)

把PGF \(G(e^t)\)各种改写,比对系数,得到这三个“高次量”的相互转换

\(\kappa_i\)\(G(e^t)\) (把累计量的定义式取指数)

\[G(e^t)=1+\frac{\frac{\kappa_1}{1!}t+\frac{\kappa_2}{2!}t^2+\dots}{1!}+\frac{(\frac{\kappa_1}{1!}t+\frac{\kappa_2}{2!}t^2+\dots)^2}{2!}+\dots \]

\(\mu_m\)

\[\begin{aligned} G(e^t)=\sum\limits_{k\geq 0}\Pr(X=k)e^{kt}&=\sum\limits_{k,m\geq 0}\Pr(X=k)k^m\cdot\frac{t^m}{m!}\\ &=1+\frac{\mu_1}{1!}t+\frac{\mu_2}{2!}t^2+\frac{\mu_3}{3!}t^3+\dots \end{aligned} \]

\(\alpha_m\)

因为

\[\begin{aligned} G(1+t)&=G(1)+\frac{G'(1)}{1!}t+\frac{G''(1)}{2!}t^2+\cdots\\ &=1+\frac{\alpha_1}{1!}t+\frac{\alpha_2}{2!}t^2+\cdots \end{aligned} \]

于是

\[\begin{aligned} G(e^t)&=1+\frac{\alpha_1}{1!}(e^t-1)+\frac{\alpha_2}{2!}(e^t-1)^2+\cdots\\ &=1+\frac{\alpha_1}{1!}(t+\frac{t^2}{2}+...)+\frac{\alpha_2}{2!}(t^2+t^3+...)+\cdots \end{aligned} \]

posted @ 2020-09-17 20:19  yhm138  阅读(1747)  评论(0编辑  收藏  举报