欢迎访问yhm138的博客园博客, 你可以通过 [RSS] 的方式持续关注博客更新

MyAvatar

yhm138

HelloWorld!

组合计数中的q-模拟 q analog

放弃更新,深度和广度上建议看THE q-SERIES IN COMBINATORICS; PERMUTATION STATISTICS (Preliminary version) August 17, 2004 Dominique Foata and Guo-Niu Han

引言

在组合计数中q-模拟有什么用?它是研究组合统计量如何分布的工具

维基词条 https://en.wikipedia.org/wiki/Q-analog

网上找到的课件 http://people.qc.cuny.edu/faculty/christopher.hanusa/courses/636fa12/Documents/636fa12ch92c.pdf

q-analog学习资源,推荐!!相当于q-模拟词条 https://www.math.upenn.edu/~peal/polynomials/q-analogues.htm

q-analog词条 https://www.symmetricfunctions.com/q-analogues.htm

定义

一个数\(c\)的q-模拟就是:一个表达式\(f(q)\),满足\(lim_{q\to1}f(q)=c\)

常见的q-模拟往往是级数的形式,或者级数的四则运算(有时级数退化为多项式)

例子

正整数\(n\)

就是形式级数\(f(q)=1+q+q^2+..+q^{n-1}\)

满足\(lim_{q\to1}f(q)=n\)

记作\([n]_q\)

逆序对研究和q-factorial

\[\sum_{\pi \in S_{n}} q^{\mathrm{inv}(\pi)}=[n]_{q} \cdots[1]_{q}=:[n]_{q} ! \]

\[lim_{q\to1}[n]_q!=|S_n| \]

q-binomial

\[\left[\begin{array}{l} n \\ k \end{array}\right]_{q}=\frac{[n]_{q} !}{[k]_{q} ![n-k]_{q} !} \]

\[\lim _{q \rightarrow 1}\left[\begin{array}{l} n \\ k \end{array}\right]_{q}=\left(\begin{array}{l} n \\ k \end{array}\right) \]

中心对称

\[\left[\begin{array}{l} n \\ k \end{array}\right]_{q}= \left[\begin{array}{l} \ \ \ n \\ n-k \end{array}\right]_{q} \]

q-binomial的Pascal恒等式是

\[\left[\begin{array}{l} m \\ r \end{array}\right]_{q}=q^{r}\left[\begin{array}{c} m-1 \\ r \end{array}\right]_{q}+\left[\begin{array}{c} m-1 \\ r-1 \end{array}\right]_{q} \]

\[\left[\begin{array}{c} m \\ r \end{array}\right]_{q}=\left[\begin{array}{c} m-1 \\ r \end{array}\right]_{q}+q^{m-r}\left[\begin{array}{c} m-1 \\ r-1 \end{array}\right]_{q} \]

q-multinomial

\[\left[\begin{array}{l} \ \ \ \ \ \ \ \ \ \ \ \ n \\ m_1,m_2,...,m_k \end{array}\right]_{q}=\frac{[n]_{q} !}{[m_1]_{q} ![m_2]_{q} !...[m_k]_{q} !} \]

\[\lim _{q \rightarrow 1}\left[\begin{array}{l} \ \ \ \ \ \ \ \ \ \ \ \ n \\ m_1,m_2,...,m_k \end{array}\right]_{q}=\left(\begin{array}{l} \ \ \ \ \ \ \ \ \ \ \ \ n \\ m_1,m_2,...,m_k \end{array}\right) \]

q-exponential

\[e_{q}^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{[n]_{q} !} \]

q-模拟的一些性质

下面的等式当\(q\to 1\)时都变成著名的组合恒等式

q-二项式定理

\[\sum_{k=0}^{n} q^{\tbinom{k }{2}}\left[\begin{array}{l} n \\ k \end{array}\right]_{q}x^{k}=\prod_{i=0}^{n-1}\left(1+x q^{i}\right) \]

q-Vandermorde定理

\[\left[\begin{array}{c} m+n \\ k \end{array}\right]_q=\sum_{i=0}^{k} q^{(m-i)(k-i)}\left[\begin{array}{c} m \\ i \end{array}\right]_q\left[\begin{array}{c} n \\ k-i \end{array}\right]_q, \forall m, n \in \mathbb{N} \]

q-朱世杰恒等式

\[\left[\begin{array}{c} m+n+1 \\ n+1 \end{array}\right]_q=\sum_{i=0}^{m} q^{i}\left[\begin{array}{c} n+i \\ n \end{array}\right]_q, \forall m, n \in \mathbb{N} \]

例题

n-排列中的inversion和major index

\[\sum_{\pi \in S_{n}} q^{\mathrm{maj}(\pi)}=\sum_{\pi \in S_{n}} q^{\mathrm{inv}(\pi)}=[n]_{q} ! \]

q-binomial应用

有很多,但是看起来都差不多,比如

这里是说把r个不可区分的球投进m个不可区分的垃圾箱里,每个垃圾箱最多容纳n个,(有的垃圾箱可以为空,每个球都在某一个垃圾桶中)。问你方案数。
一种理解是把这个当成有限制的分拆partition:summmands个数最多是m,summands大小最大是n。

还可以计数:

Let V is an n-dimensional vector space over the finite field of q elements.
QBinomial[n,k,q] is the number of k-dimensional subspaces of V

也可以描述分布:

\[\left[\begin{array}{l} n \\ k \end{array}\right]=\sum_{S_{\subseteq M,|S|=k}} q^{\operatorname{inv}(w(S))}=\sum_{S \subseteq M,|S|=k} q^{\operatorname{maj}(w(S))} \]

其中的定义都可以在这个pdf的14~15页找到。

q-multinomial

\(M_\alpha\)是【多重集\(\{m_1个1,m_2个2,...,m_k个k\}\)构成的全排列】组成的集合

\[\sum_{\pi \in M_{\alpha}} q^{\mathrm{maj}(\pi)}=\sum_{\pi \in M_{\alpha}} q^{\mathrm{inv}(\pi)}=\left[\begin{array}{l} \ \ \ \ \ \ \ \ \ \ \ \ n \\ m_1,m_2,...,m_k \end{array}\right]_{q} \]

Catalan数

\(W_n\)是那些长度为\(2n\)的01卡特兰序列(从左往右遇到的0总比1多,注意!!这里不要弄反了不然下面等式等不了)的集合

\[\sum_{\pi \in W_{n}} q^{\mathrm{maj}(\pi)}=\frac{1}{[n+1]_q} \left[\begin{array}{c} 2n \\ n \end{array}\right]_q \]

举例,n=2, 0011,0101 maj分别是0,2

\[q^0+q^2=\frac{1}{1+q+q^2}\cdot \frac{\left(1-q^{4}\right)\left(1-q^{3}\right)}{(1-q)\left(1-q^{2}\right)} =\frac{1}{1+q+q^2}\cdot \left(1+q^{2}\right)\left(1+q+q^{2}\right) =1+q^2 \]

降位数

定义一个排列\(\sigma\)的降位个数\(des(\sigma)=:\sum\limits_{\sigma_i>\sigma_{i+1}}1\)

长度为\(n\)降位个数为\(k-1\)的排列构成的集合为\(A_{n,k}\) 大小 \(a_{n,k}=:|A_{n,k}|\)

Eulerian多项式定义

\[E_n(q)=\sum_{\pi \in S_{n}} q^{1+\mathrm{des}(\pi)}=\sum_{k=1}^{n}{a_{n,k}q^k} \]

举例,n=3 123,132,213,231,312,321 降位数分别是0,1,1,1,1,2

\[E_3(q)=q^1+4q^2+q^3 \]

posted @ 2020-08-25 22:55  yhm138  阅读(927)  评论(0编辑  收藏  举报