欢迎访问yhm138的博客园博客, 你可以通过 [RSS] 的方式持续关注博客更新

MyAvatar

yhm138

HelloWorld!

BGF bivariate generating function 双变量生成函数

定义

BGF bivariate generating function

形式变量\(z\)对应于下标\(n\),形式变量\(u\)对应于下标\(k\)

BGF就是个二重求和

image-20200823234343693

horizonal GF 和 vertical GF

image-20200823234516222

例子

组合数

horizonal GF

\[W_{n}(u):=\sum_{k=0}^{n}\left(\begin{array}{l} n \\ k \end{array}\right) u^{k}=(1+u)^{n} \]

vertical GF (Ord case)

\[W^{\langle k\rangle}(z)=\sum_{n \geq 0}\left(\begin{array}{l} n \\ k \end{array}\right) z^{n}=\frac{z^{k}}{(1-z)^{k+1}} \]

vertical GF (Exp case)

\[\sum_{n \geq 0}\left(\begin{array}{l} n \\ k \end{array}\right) \frac{z^{n}}{n!}=e^zz^k/k! \]

OBGF

先算行再算列,

\[W(z, u)=\sum_{k, n \geq 0}\left(\begin{array}{l} n \\ k \end{array}\right) u^{k} z^{n}=\sum_{n \geq 0}(1+u)^{n} z^{n}=\frac{1}{1-z(1+u)} \]

先算列再算行

\[W(z, u)=\sum_{k \geq 0} u^{k} \frac{z^{k}}{(1-z)^{k+1}}=\frac{1}{1-z} \frac{1}{1-u \frac{z}{1-z}}=\frac{1}{1-z(1+u)} \]

EBGF

先算行再算列

\[\widetilde{W}(z, u)=\sum_{k, n}\left(\begin{array}{l} n \\ k \end{array}\right) u^{k} \frac{z^{n}}{n !}=\sum(1+u)^{n} \frac{z^{n}}{n !}=e^{z(1+u)} \]

第一类斯特林数

vertical GF (Exp case)

\[P^{\langle k\rangle}(z):=\sum_{n}\left[\begin{array}{l} n \\ k \end{array}\right] \frac{z^{n}}{n !}=\frac{1}{k !}(\mathbb{log}\frac{1}{1-z})^k \]

EBGF

先算列再算行

\[\begin{aligned} P(z, u) &:=\sum_{k} P^{\langle k\rangle}(z) u^{k}=\sum_{k} \frac{u^{k}}{k !} L(z)^{k}=e^{u L(z)} \\ &=(1-z)^{-u} \end{aligned}\\ where\ L(z)=\mathbb{log}\frac{1}{1-z} \]

间接求horizonal GF

\[\mathbb{expand} \ \ P(z,u)=(1-z)^{-u},\\ P(z,u)=(1-z)^{-u}=\sum_{n \geq 0}\left(\begin{array}{c} n+u-1 \\ n \end{array}\right) z^{n} \]

\[\mathbb{horizonal} \ GF \ \ \ \ P_n(u)=u(u+1)(u+2)...(u+n-1) \]

image-20200823235205206

posted @ 2020-08-23 23:57  yhm138  阅读(427)  评论(0编辑  收藏  举报