University of Toronto Faculty of Arts and Science MAT344– Final Assessment Combinatorics Instructors: Stanislav Balchev and Max Klambauer 19 August 2020
总共9题,这里选择性地做一下。
时间仓促,没有核对答案。
T1
Give a formula for the number of lattice paths from (0,0) to (3n,n) where there are no instances of a vertical step being followed by another vertical step.
dp呗
\(dp[i][j][0]\)表示是1个horizonal step来到(i,j)的方法数
\(dp[i][j][1]\)表示是1个vertical step来到(i,j)的方法数
边界条件
嗯这个肯定有简单的方法,但我暂时没想到
T2
给你一个图,问你它是不是平面图或者是不是和平面图同构?给出理由
直接上库拉托夫斯基定理Kuratowski's Theorem
一个图是平面的当且仅当它不包含同胚于\(K_5\)或\(K_{3,3}\)的子图
A graph is planar if and only if it contains no subdivision of either \(K_5\) or \(K_{3,3}\)
我找了半天,你可以看到一个同胚于\(K_5\)的子图,所以图\(G\)不是平面图
用那个Euler不等式
\(e>3v-6\),则图\(G\)非平面图
\(19<24\) 没作用
T3
图形的色数是产生图形正确着色所需的最小颜色数。(点染色)
首先团数clique number(能找到的最大\(i\),存在子图是完全图\(K_i\))是3,那么色数至少是3
提示已经给到位了,我们把字符串看成十进制数,然后按照%3的余数进行染3种色:比如mod3为0染0号色;mod3为1染1号色;mod3为2染2号色
考虑颜色相同的两个不同的点,它们肯定不相邻,因为相邻的点mod3一定不等。
这说明我们找到了3种颜色点染色的方案。
所以,图\(G\)的色数是3
T4
手解Ford-Fulkerson algorithm
算了这算法我没弄明白过
吐个槽,我差点和那个求最短路的Bellman Ford algorithm弄混了
但是这题给的例子太弱了,甚至可以直接看出来
可以先把比边权都除以5,方便计算
最后的最大流是20,一种方案是
T5
solution to (a)
EGF板子题
反演回去
solution to (b)
这时候就要用到博大精深的汉语了
12人5工程,每个工程至少1人,每人最多1工程。
solution to (c)
30个不同球放5个不同帽子。每个帽子至少1个球,但是1个帽子里不能装所有球。
水题。
$ 5!\cdot S_2(30,5)-5$
\(S_2(n,m)\)是第二类斯特林数,把\([n]\)分为\(m\)个非空子集的划分个数
solution to (d)
n=15的错排是吗?没理解错的话
人生苦短,记不住显式的公式\(f(n)=n!(\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-...(-1)^n\frac{1}{n!})\)还是递推吧
递推式的证明:
考虑排列的圆分解,错排(derangement)是说长度为1的cycle的个数为0。
考虑最后一个元素\(n\),如果它所在的cycle长度\(\geq 3\),这相当于把\(n\)插入到(n-1)-错排排列的圆分解的\((n-1)\)个间隙之一,这有\((n-1)f(n-1)\)种,贡献了第一项
如果它所在的cycle长度为2,相当于从[n-1]中选出一个与\(n\)构成【互相置换】,剩下的n-2个构成错排,这有\((n-1)f(n-2)\)种,贡献了第二项
T6
T7
T8
没看懂
T9
先做EGF
再反演回去
其中