scikit-learn学习笔记
参考资料:
python机器学习库scikit-learn简明教程之:随机森林
http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/kaggle/titanic.ipynb
scikit-learn sklearn 0.18 官方文档中文版
https://github.com/jakevdp/sklearn_pycon2015
官网:http://scikit-learn.org/stable/
Scikit-learn (sklearn) 优雅地学会机器学习 (莫烦 Python 教程)
python机器学习库scikit-learn简明教程之:AdaBoost算法
http://www.docin.com/p-1775095945.html
https://www.bilibili.com/video/av22530538/?p=6
https://github.com/Fdevmsy/Image_Classification_with_5_methods
https://github.com/huangchuchuan/SVM-HOG-images-classifier
https://blog.csdn.net/always2015/article/details/47100713
DBScan https://www.cnblogs.com/pinard/p/6208966.html
1.KNN的使用
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | carto@cartoPC:~$ python Python 2.7.12 ( default , Dec 4 2017, 14:50:18) [GCC 5.4.0 20160609] on linux2 Type "help" , "copyright" , "credits" or "license" for more information. >>> import numpy as np >>> from sklearn import datasets >>> from sklearn.cross_validation import train_test_split /usr/local/lib/python2.7/dist-packages/sklearn/cross_validation.py:41: DeprecationWarning: This module was deprecated in version 0.18 in favor of the model_selection module into which all the refactored classes and functions are moved. Also note that the interface of the new CV iterators are different from that of this module. This module will be removed in 0.20. "This module will be removed in 0.20." , DeprecationWarning) >>> from sklearn.neighbors import KNeighborsClassifier >>> iris=datasets.load_iris() >>> iris_X=iris.data >>> iris_y=iris.target >>> print(iris_X[:2,:]) [[ 5.1 3.5 1.4 0.2] [ 4.9 3. 1.4 0.2]] >>> print(iris_y) [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] >>> X_train,X_test,y_train,y_test=train_test_split(iris_X,iris_y,test_size=0.3) >>> print(y_train) [2 1 0 0 0 2 0 0 1 1 2 2 1 1 2 2 2 0 1 0 2 2 1 1 1 1 1 0 1 1 0 2 1 0 0 2 2 0 0 2 1 0 0 2 1 2 1 2 1 1 1 2 1 2 0 2 0 1 1 2 1 0 1 2 2 0 2 2 1 0 1 1 2 2 1 0 1 1 2 0 0 1 0 1 0 2 0 1 1 0 2 1 2 0 2 0 2 0 2 1 0 2 0 2 2] >>> knn=KNeighborsClassifier() >>> knn.fit() Traceback (most recent call last): File "<stdin>" , line 1, in <module> TypeError: fit() takes exactly 3 arguments (1 given) >>> knn.fit(X_train,y_train) KNeighborsClassifier(algorithm= 'auto' , leaf_size=30, metric= 'minkowski' , metric_params=None, n_jobs=1, n_neighbors=5, p=2, weights= 'uniform' ) >>> print(knn.predict(X_test)) [1 1 2 0 1 1 1 1 2 0 0 2 0 1 0 0 0 1 2 2 2 2 0 1 2 0 1 2 2 0 1 2 0 0 1 0 0 0 0 1 0 1 1 2 0] >>> print(y_test) [1 1 2 0 1 1 1 1 2 0 0 2 0 1 0 0 0 1 2 2 2 2 0 1 2 0 1 2 2 0 2 2 0 0 2 0 0 0 0 1 0 1 1 2 0] >>> |
2.SVC的使用
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | import pandas as pd import numpy as np from sklearn import datasets from sklearn import svm from sklearn.model_selection import train_test_split def load_data(): iris=datasets.load_iris() X_train,X_test,y_train,y_test=train_test_split( iris.data,iris.target,test_size=0.10,random_state=0) return X_train,X_test,y_train,y_test def test_LinearSVC(X_train,X_test,y_train,y_test): cls=svm.LinearSVC() cls.fit(X_train,y_train) print( 'Coefficients:%s, intercept %s' %(cls.coef_,cls.intercept_)) print( 'Score: %.2f' %cls.score(X_test,y_test)) if __name__== "__main__" : X_train,X_test,y_train,y_test=load_data() test_LinearSVC(X_train,X_test,y_train,y_test) |
调用
1 2 3 4 5 | carto@cartoPC:~/python_ws$ python svmtest2.py Coefficients:[[ 0.18424504 0.45123335 -0.80794237 -0.45071267] [-0.13381099 -0.75235247 0.57223898 -1.11494325] [-0.7943601 -0.95801711 1.31465593 1.8169808 ]], intercept [ 0.10956304 1.86593164 -1.72576407] Score: 1.00 |
作者:太一吾鱼水
文章未经说明均属原创,学习笔记可能有大段的引用,一般会注明参考文献。
欢迎大家留言交流,转载请注明出处。
分类:
计算机视觉&机器学习
标签:
scikit-learn
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 单元测试从入门到精通
· 上周热点回顾(3.3-3.9)
· Vue3状态管理终极指南:Pinia保姆级教程
2014-08-15 MFC和Direct3D9一起使用