Cartographer源码阅读(4):Node和MapBuilder对象2
MapBuilder的成员变量sensor::Collator sensor_collator_;
再次阅读MapBuilder::AddTrajectoryBuilder方法。首先构造了mapping::GlobalTrajectoryBuilder实例,接着作为参数构造了CollatedTrajectoryBuilder实例。
1 2 3 4 5 6 7 | trajectory_builders_.push_back( common::make_unique<CollatedTrajectoryBuilder>( &sensor_collator_, trajectory_id, expected_sensor_ids, common::make_unique<mapping::GlobalTrajectoryBuilder<mapping_2d::LocalTrajectoryBuilder,mapping_2d::proto::LocalTrajectoryBuilderOptions,mapping_2d::PoseGraph>> (trajectory_options.trajectory_builder_2d_options(),trajectory_id, pose_graph_2d_.get(),local_slam_result_callback) ) ); |
这里sensor_collator_作为参数传入,参与CollatedTrajectoryBuilder构造。查看构造函数:
1 2 3 4 5 6 7 8 9 10 11 12 13 | CollatedTrajectoryBuilder::CollatedTrajectoryBuilder(sensor::Collator* const sensor_collator, const int trajectory_id, const std::unordered_set<std::string>& expected_sensor_ids, std::unique_ptr<TrajectoryBuilderInterface> wrapped_trajectory_builder) : sensor_collator_(sensor_collator) , trajectory_id_(trajectory_id) , wrapped_trajectory_builder_(std::move(wrapped_trajectory_builder)) , last_logging_time_(std::chrono::steady_clock::now()) { sensor_collator_->AddTrajectory(trajectory_id, expected_sensor_ids, [ this ]( const std::string& sensor_id, std::unique_ptr<sensor::Data> data) { HandleCollatedSensorData(sensor_id, std::move(data)); } ); } |
这里是回调函数,std::unique_ptr是表示参数为智能指针。
1 2 3 4 | [ this ]( const std::string& sensor_id, std::unique_ptr<sensor::Data> data) { HandleCollatedSensorData(sensor_id, std::move(data)); } |
(1)查看sensor::Collator的AddTrajectory方法:
1 2 3 4 5 6 7 8 9 10 11 12 | void Collator::AddTrajectory( const int trajectory_id, const std::unordered_set<std::string>& expected_sensor_ids, const Callback& callback) { for ( const auto & sensor_id : expected_sensor_ids) { const auto queue_key = QueueKey{trajectory_id, sensor_id}; queue_.AddQueue(queue_key, [callback, sensor_id](std::unique_ptr<Data> data) { callback(sensor_id, std::move(data)); }); queue_keys_[trajectory_id].push_back(queue_key); } } |
for (const auto& sensor_id : expected_sensor_ids)用到了C++11的auto新特性。
(2)查看HandleCollatedSensorData方法。调用了data->AddToTrajectoryBuilder(wrapped_trajectory_builder_.get());这里wrapped_trajectory_builder_是在CollatedTrajectoryBuilder构造函数中赋值的。为GlobalTrajectoryBuilder对象。因而查看sensor::Data的AddToTrajectoryBuilder() 方法。
virtual void AddToTrajectoryBuilder(mapping::TrajectoryBuilderInterface *trajectory_builder) = 0;是sensor::Data类的一个虚方法。内部执行了trajectory_builder->AddSensorData(sensor_id_, data_);
最后调用的是GlobalTrajectoryBuilder对象的AddSensorData(xx)方法。

1 void CollatedTrajectoryBuilder::HandleCollatedSensorData( const std::string& sensor_id, std::unique_ptr<sensor::Data> data) 2 { 3 auto it = rate_timers_.find(sensor_id); 4 if (it == rate_timers_.end()) 5 { 6 it = rate_timers_ .emplace( 7 std::piecewise_construct, std::forward_as_tuple(sensor_id), 8 std::forward_as_tuple(common::FromSeconds(kSensorDataRatesLoggingPeriodSeconds))) .first; 9 } 10 it->second.Pulse(data->GetTime()); 11 12 if (std::chrono::steady_clock::now() - last_logging_time_ > 13 common::FromSeconds(kSensorDataRatesLoggingPeriodSeconds)) 14 { 15 for (const auto& pair : rate_timers_) 16 { 17 LOG(INFO) << pair.first << " rate: " << pair.second.DebugString(); 18 } 19 last_logging_time_ = std::chrono::steady_clock::now(); 20 } 21 22 data->AddToTrajectoryBuilder(wrapped_trajectory_builder_.get()); 23 } 24 25 }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | template < typename DataType> class Dispatchable : public Data { public : Dispatchable( const std::string &sensor_id, const DataType &data): Data(sensor_id), data_(data) {} common::Time GetTime() const override { return data_. time ; } void AddToTrajectoryBuilder( mapping::TrajectoryBuilderInterface * const trajectory_builder) override { trajectory_builder->AddSensorData(sensor_id_, data_); } private : const DataType data_; }; |
再以IMU数据为例,GlobalTrajectoryBuilder类的AddSensorData(xx):
1 2 3 4 5 | void AddSensorData( const std::string& sensor_id, const sensor::ImuData& imu_data) override { local_trajectory_builder_.AddImuData(imu_data); pose_graph_->AddImuData(trajectory_id_, imu_data); } |
再看一下激光点云的数据
1 void AddSensorData( const std::string& sensor_id, const sensor::TimedPointCloudData& timed_point_cloud_data) override 2 { 3 std::unique_ptr<typename LocalTrajectoryBuilder::MatchingResult> matching_result = 4 local_trajectory_builder_.AddRangeData( timed_point_cloud_data.time, 5 sensor::TimedRangeData {timed_point_cloud_data.origin, 6 timed_point_cloud_data.ranges, {}} 7 ); 8 if (matching_result == nullptr) 9 { 10 // The range data has not been fully accumulated yet. 11 return; 12 } 13 std::unique_ptr<mapping::NodeId> node_id; 14 if (matching_result->insertion_result != nullptr) 15 { 16 node_id = ::cartographer::common::make_unique<mapping::NodeId>( 17 pose_graph_->AddNode(matching_result->insertion_result->constant_data, 18 trajectory_id_, matching_result->insertion_result->insertion_submaps)); 19 CHECK_EQ(node_id->trajectory_id, trajectory_id_); 20 } 21 if (local_slam_result_callback_) 22 { 23 local_slam_result_callback_( trajectory_id_, matching_result->time, 24 matching_result->local_pose, 25 std::move(matching_result->range_data_in_local), std::move(node_id)); 26 } 27 }
这里有两个重要的步骤一个是local_trajectory_builder_.AddRangeData(xxx),一个是 pose_graph_->AddNode(xxx)方法。同时std::unique_ptr<typename LocalTrajectoryBuilder::MatchingResult> matching_result作为AddNode方法的参数。

1 mapping::NodeId PoseGraph::AddNode( 2 std::shared_ptr<const mapping::TrajectoryNode::Data> constant_data, 3 const int trajectory_id, 4 const std::vector<std::shared_ptr<const Submap>>& insertion_submaps) { 5 const transform::Rigid3d optimized_pose( 6 GetLocalToGlobalTransform(trajectory_id) * constant_data->local_pose); 7 8 common::MutexLocker locker(&mutex_); 9 AddTrajectoryIfNeeded(trajectory_id); 10 const mapping::NodeId node_id = trajectory_nodes_.Append( 11 trajectory_id, mapping::TrajectoryNode{constant_data, optimized_pose}); 12 ++num_trajectory_nodes_; 13 14 // Test if the 'insertion_submap.back()' is one we never saw before. 15 if (submap_data_.SizeOfTrajectoryOrZero(trajectory_id) == 0 || 16 std::prev(submap_data_.EndOfTrajectory(trajectory_id))->data.submap != 17 insertion_submaps.back()) { 18 // We grow 'submap_data_' as needed. This code assumes that the first 19 // time we see a new submap is as 'insertion_submaps.back()'. 20 const mapping::SubmapId submap_id = 21 submap_data_.Append(trajectory_id, SubmapData()); 22 submap_data_.at(submap_id).submap = insertion_submaps.back(); 23 } 24 25 // We have to check this here, because it might have changed by the time we 26 // execute the lambda. 27 const bool newly_finished_submap = insertion_submaps.front()->finished(); 28 AddWorkItem([=]() REQUIRES(mutex_) { 29 ComputeConstraintsForNode(node_id, insertion_submaps, 30 newly_finished_submap); 31 }); 32 return node_id; 33 }
PoseGraph::AddNode方法很重要,分析节点和子图的关系。
此处强调一下GlobalTrajectoryBuilder的两个关键对象local_trajectory_builder_和pose_graph_。
1 2 | PoseGraph* const pose_graph_; LocalTrajectoryBuilder local_trajectory_builder_; |
接下来按照准备安装ROS消息发布和处理的流程进行分析,即数据流。
参考资料:
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 单元测试从入门到精通
· 上周热点回顾(3.3-3.9)
· Vue3状态管理终极指南:Pinia保姆级教程
2014-01-10 CSLA.Net学习(2)