[PCL]模型拟合方法——随机采样一致性
SACSegmentation封装了多种Ransac方法,包括:
RandomSampleConsensus,
LeastMedianSquares,
MEstimatorSampleConsensus
ProgressiveSampleConsensus,
RandomizedRandomSampleConsensus,
RandomizedMEstimatorSampleConsensus,
MaximumLikelihoodSampleConsensus
1.PCL所谓的平行线判断,是已知一个法向量,判断面与之平行。
2.PCL直线Ransac拟合,为啥只需要设置一个距离阈值?因为默认值迭代50次
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 | template < typename PointT> void pcl::SACSegmentation<PointT>::initSAC ( const int method_type) { if (sac_) sac_.reset (); // Build the sample consensus method switch (method_type) { case SAC_RANSAC: default : { PCL_DEBUG ( "[pcl::%s::initSAC] Using a method of type: SAC_RANSAC with a model threshold of %f\n" , getClassName ().c_str (), threshold_); sac_.reset ( new RandomSampleConsensus<PointT> (model_, threshold_)); break ; } case SAC_LMEDS: { PCL_DEBUG ( "[pcl::%s::initSAC] Using a method of type: SAC_LMEDS with a model threshold of %f\n" , getClassName ().c_str (), threshold_); sac_.reset ( new LeastMedianSquares<PointT> (model_, threshold_)); break ; } case SAC_MSAC: { PCL_DEBUG ( "[pcl::%s::initSAC] Using a method of type: SAC_MSAC with a model threshold of %f\n" , getClassName ().c_str (), threshold_); sac_.reset ( new MEstimatorSampleConsensus<PointT> (model_, threshold_)); break ; } case SAC_RRANSAC: { PCL_DEBUG ( "[pcl::%s::initSAC] Using a method of type: SAC_RRANSAC with a model threshold of %f\n" , getClassName ().c_str (), threshold_); sac_.reset ( new RandomizedRandomSampleConsensus<PointT> (model_, threshold_)); break ; } case SAC_RMSAC: { PCL_DEBUG ( "[pcl::%s::initSAC] Using a method of type: SAC_RMSAC with a model threshold of %f\n" , getClassName ().c_str (), threshold_); sac_.reset ( new RandomizedMEstimatorSampleConsensus<PointT> (model_, threshold_)); break ; } case SAC_MLESAC: { PCL_DEBUG ( "[pcl::%s::initSAC] Using a method of type: SAC_MLESAC with a model threshold of %f\n" , getClassName ().c_str (), threshold_); sac_.reset ( new MaximumLikelihoodSampleConsensus<PointT> (model_, threshold_)); break ; } case SAC_PROSAC: { PCL_DEBUG ( "[pcl::%s::initSAC] Using a method of type: SAC_PROSAC with a model threshold of %f\n" , getClassName ().c_str (), threshold_); sac_.reset ( new ProgressiveSampleConsensus<PointT> (model_, threshold_)); break ; } } // Set the Sample Consensus parameters if they are given/changed if (sac_->getProbability () != probability_) { PCL_DEBUG ( "[pcl::%s::initSAC] Setting the desired probability to %f\n" , getClassName ().c_str (), probability_); sac_->setProbability (probability_); } if (max_iterations_ != -1 && sac_->getMaxIterations () != max_iterations_) { PCL_DEBUG ( "[pcl::%s::initSAC] Setting the maximum number of iterations to %d\n" , getClassName ().c_str (), max_iterations_); sac_->setMaxIterations (max_iterations_); } if (samples_radius_ > 0.) { PCL_DEBUG ( "[pcl::%s::initSAC] Setting the maximum sample radius to %f\n" , getClassName ().c_str (), samples_radius_); // Set maximum distance for radius search during random sampling model_->setSamplesMaxDist (samples_radius_, samples_radius_search_); } } |
作者:太一吾鱼水
文章未经说明均属原创,学习笔记可能有大段的引用,一般会注明参考文献。
欢迎大家留言交流,转载请注明出处。
分类:
PointCloud
标签:
Point Cloud
, PCL
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 单元测试从入门到精通
· 上周热点回顾(3.3-3.9)
· Vue3状态管理终极指南:Pinia保姆级教程
2017-04-02 小豆包的学习之旅:入门篇
2015-04-02 [GDAL]写入shp
2012-04-02 MVC和MVP的初步理解