SoloHa

博客园 首页 新随笔 联系 订阅 管理

第1章 MapReduce入门

1.1 MapReduce定义

在这里插入图片描述
毫不夸张的说mapreduce是数据分析的鼻祖框架,其实我们学习,并不是说要学会它怎么用,而是要去懂它的一个编程思想,恰恰如此,我们的mapreduce就是这种分布式计算思想的一个体现.
Mapreduce是一个分布式运算程序的编程框架,是用户开发“基于hadoop的数据分析应用”的核心框架.
Mapreduce核心功能是将用户编写的业务逻辑代码和自带默认组件整合成一个完整的分布式运算程序,并发运行在一个hadoop集群上。
框架是一个半成品

1.2 MapReduce优缺点

1.2.1 优点

1.MapReduce 易于编程
它简单的实现一些接口,就可以完成一个分布式程序,这个分布式程序可以分布到大量廉价的PC机器上运行。就是因为这个特点使得MapReduce编程变得非常流行。
2.良好的扩展性
当你的计算资源不能得到满足的时候,你可以通过简单的增加机器来扩展它的计算能力。
3.高容错性
MapReduce设计的初衷就是使程序能够部署在廉价的PC机器上,这就要求它具有很高的容错性。比如其中一台机器挂了,它可以把上面的计算任务转移到另外一个节点上运行,不至于这个任务运行失败,而且这个过程不需要人工参与,而完全是由Hadoop内部完成的。
4.适合PB级以上海量数据的离线处理
它适合离线处理而不适合在线处理。比如像毫秒级别的返回一个结果,MapReduce很难做到。

1.2.2 缺点

MapReduce不擅长做实时计算、流式计算、DAG(有向图)计算。

  1. 实时计算
    MapReduce无法像Mysql一样,在毫秒或者秒级内返回结果。
  2. 流式计算
  3. 流式计算的输入数据是动态的,而MapReduce的输入数据集是静态的,不能动态变化。这是因为MapReduce自身的设计特点决定了数据源必须是静态的。 温度 湿度 距离 摄像头产生的数据都是实时的,都是动态的,这些mapreduce无法处理。
  4. DAG(有向图)计算
    多个应用程序存在依赖关系,后一个应用程序的输入为前一个的输出。在这种情况下,MapReduce并不是不能做,而是使用后,每个MapReduce作业的输出结果都会写入到磁盘,会造成大量的磁盘IO,导致性能非常的低下。

1.3 MapReduce核心思想

MapReduce核心编程思想,如图所示
在这里插入图片描述
块是存储的概念,块大小默认是128M,物理层面上的切
切片是取的概念,切片大小默认是128M 逻辑上的 0-128 第一片 128-200第二片

1)分布式的运算程序往往需要分成至少2个阶段。
2)第一个阶段的maptask并发实例,完全并行运行,互不相干。
3)第二个阶段的reduce task并发实例互不相干,但是他们的数据依赖于上一个阶段的所有maptask并发实例的输出。
4)MapReduce编程模型只能包含一个map阶段和一个reduce阶段,如果用户的业务逻辑非常复杂,那就只能多个mapreduce程序,串行运行。

1.4 MapReduce进程(MR)

一个完整的mapreduce程序在分布式运行时有三类实例进程:
1)MrAppMaster:负责整个程序的过程调度及状态协调。
2)MapTask:负责map阶段的整个数据处理流程。
3)ReduceTask:负责reduce阶段的整个数据处理流程。

1.5 MapReduce编程规范(八股文)

用户编写的程序分成三个部分:Mapper、Reducer和Driver。
1.Mapper阶段
(1)用户自定义的Mapper要继承自己的父类
(2)Mapper的输入数据是KV对的形式(KV的类型可自定义)
(3)Mapper中的业务逻辑写在map()方法中
(4)Mapper的输出数据是KV对的形式(KV的类型可自定义)
(5)map()方法(maptask进程)对每一个<K,V>调用一次
2.Reducer阶段
(1)用户自定义的Reducer要继承自己的父类
(2)Reducer的输入数据类型对应Mapper的输出数据类型,也是KV
(3)Reducer的业务逻辑写在reduce()方法中
(4)Reducetask进程对每一组相同k的<k,v>组调用一次reduce()方法
3.Driver阶段(关联Mapper和Reducer,并且提交任务到集群)
相当于yarn集群的客户端,用于提交我们整个程序到yarn集群,提交的是封装了mapreduce程序相关运行参数的job对象

posted on 2020-06-08 12:14  SoloHa  阅读(353)  评论(0编辑  收藏  举报