Codeforces Round 960 (Div. 2) 补题记录(A~D)

打的稀烂,但是还是上分了(

A

考虑对值域做一个后缀和。若某一个后缀和的值是奇数那么先手就可以获胜。否则就不可以获胜。

(我才不会告诉你我这题吃了一次罚时的)

#pragma GCC optimize(3)
#include <bits/stdc++.h>
#define int long long
using namespace std;
int mysqrt(int x) {
    int l = 0, r = x + 10, best = -1;
    while (l <= r) {
        int mid = l + r >> 1;
        if ((__int128)(mid) * (__int128)(mid) <= x)
            best = mid, l = mid + 1;
        else
            r = mid - 1;
    }
    return best;
}
const int N = 500100;
int n;
int a[N], box[N];
signed main() {
    int T;
    cin >> T;
    while (T--) {
        scanf("%lld", &n);
        for (int i = 1; i <= n; ++i)
            scanf("%lld", &a[i]), box[i] = 0;
        for (int i = 1 ;i <= n; ++i)
            ++box[a[i]];
        if (box[n] & 1) {
            puts("YES");
            continue;
        }
        for (int i = n - 1; i; --i) {
            box[i] += box[i - 1];
            if (box[i] & 1) {
                puts("YES");
                goto ee;
            }
        }
        puts("NO");
        ee:;
    }
    return 0;
}

B

构造。因为 \(a_i\in\lbrace-1,1\rbrace\),所以可以考虑简单一些的构造:

  • 对于 \(i\in [1,y)\),考虑从后往前交替构造 \(-1,1\),这样可以满足比 \(y\) 要小的位置的后缀和不会大于 \(y\) 位置的后缀和。
  • 对于 \(i\in [y,x]\), 考虑全部构造 \(1\)
  • 对于 \(i\in (x,n]\),考虑正着构造 \(1,-1\),这样可以满足比 \(x\) 要大的位置的前缀和不会大于 \(x\) 位置的前缀和。

证明显然。时间复杂度为 \(O(n)\)

#pragma GCC optimize(3)
#include <bits/stdc++.h>
#define int long long
using namespace std;
int mysqrt(int x) {
    int l = 0, r = x + 10, best = -1;
    while (l <= r) {
        int mid = l + r >> 1;
        if ((__int128)(mid) * (__int128)(mid) <= x)
            best = mid, l = mid + 1;
        else
            r = mid - 1;
    }
    return best;
}
const int N = 500100;
int n;
int a[N], box[N];
signed main() {
    int T;
    cin >> T;
    while (T--) {
        int n, x, y;
        scanf("%lld%lld%lld", &n, &x, &y);
        int idx = 0;
        for (int i = y - 1; i; --i) {
            ++idx;
            if (idx & 1) a[i] = -1;
            else a[i] = 1;
        }
        for (int i = y; i <= x; ++i) {
            a[i] = 1;
        }
        idx = 0;
        for (int i = x + 1; i <= n; ++i) {
            ++idx;
            if (idx & 1) a[i] = -1;
            else a[i] = 1;
        }
        for (int i = 1; i <= n; ++i)
            printf("%lld ", a[i]);
        puts("");
    }
    return 0;
}

C

奇怪的结论。容易发现执行 \(\text{MAD}\) 函数至少一次之后函数的值一定单调不减,然后可以发现,如果每一个数的出现次数不为 \(1\),那么可以一遍前缀和快速的算出答案(此时 \(b\) 数组的变化是每一次从后面删除一个字符)。

问题在于如何让 \(b\) 数组每一个数的出现次数都不为 \(1\)。手玩小样例之后发现在经过不超过 \(20\) 次操作之后一定可以满足这个条件。所以暴力迭代即可。

#pragma GCC optimize(3)
#include <bits/stdc++.h>
#define int long long
using namespace std;
int mysqrt(int x) {
    int l = 0, r = x + 10, best = -1;
    while (l <= r) {
        int mid = l + r >> 1;
        if ((__int128)(mid) * (__int128)(mid) <= x)
            best = mid, l = mid + 1;
        else
            r = mid - 1;
    }
    return best;
}
const int N = 500100;
int n;
int a[N], box[N], b[N], s[N];
signed main() {
    int T;
    cin >> T;
    while (T--) {
        int n;
        scanf("%lld", &n);
        int now = 0, sum = 0;
        for (int i = 1; i <= n; ++i)
            scanf("%lld", &a[i]), box[i] = 0, sum += a[i];
        for (int _ = 0; _ < 20; ++_) {
            for (int i = 1; i <= n; ++i)
               box[i] = 0;
            now = 0;
            for (int i = 1; i <= n; ++i) {
                ++box[a[i]];
                if (box[a[i]] >= 2 && now < a[i])
                    now = a[i];
                b[i] = now;
            }
            for (int i = 1; i <= n; ++i)
                s[i] = s[i - 1] + b[i], a[i] = b[i];
            // cout << _ << ": ";
            // for (int i = 1; i <= n; ++i)
            //     cout << b[i] << ' '; cout << '\n';
            sum += s[n];
        }
        int p = 1, rig = n;
        while (p <= rig) {
            set<int> se;
            se.insert(b[p]);
            while (p < rig && (!se.count(b[p + 1]) || b[p] == 0))
                ++p, se.insert(b[p]);
            --rig;
            // cout << "qwq " << p << ' ' << rig << ' ' << sum << '\n';
            sum += s[rig] - s[p - 1];
        }
        printf("%lld\n", sum);
    }
    return 0;
}

D

分类讨论。

容易发现 \(a_i=0\) 的地方已经全部染成白色,也就是将需要染色的区间一分为二。\(a_i>4\) 的区间直接染一行一定比染 \(2\times 2\) 方格要优秀。\(n=1\) 则分类讨论 \(a_1\) 的值为 \(1\) 还是 \(0\) 即可。问题在于 \(a_i\in\lbrace1,2,3,4\rbrace\) 的情况。

容易发现如果对于一段极大的区间 \([l,r]\),则若 \(\max\limits_{i=l}^r a_i\le 2\),则此时只需要染 \(\lceil\frac{r-l+1}{2}\rceil\)\(2\times 2\) 就可以满足条件。然后如果出现类似于样例第二个点(中间 \(3\)\(4\),边上 \(1\)\(2\),长度为偶数)的情况,此时只需要染 \(r-l\) 次色即可。

然后随便 dp 一下,设 \(f_i\) 表示染色前 \(i\) 行最少需要染色几次。然后直接根据分类讨论的情况 dp 即可。时间复杂度为 \(O(n\log n)\)(ST 表)或者 \(O(n\log^2n)\)(线段树)。

#pragma GCC optimize(3)
#include <bits/stdc++.h>
#define int long long
using namespace std;
int mysqrt(int x) {
    int l = 0, r = x + 10, best = -1;
    while (l <= r) {
        int mid = l + r >> 1;
        if ((__int128)(mid) * (__int128)(mid) <= x)
            best = mid, l = mid + 1;
        else
            r = mid - 1;
    }
    return best;
}
const int N = 500100;
int n, f[N][20], g[N][20], a[N], F[N];
int askmin(int l, int r) {
    int p = __lg(r - l + 1);
    return min(f[l][p], f[r - (1ll << p) + 1][p]);
}
int askmax(int l, int r) {
    int p = __lg(r - l + 1);
    return max(g[l][p], g[r - (1ll << p) + 1][p]);
}
signed main() {
    int T;
    cin >> T;
    while (T--) {
        int n;
        scanf("%lld", &n);
        for (int i = 1; i <= n; ++i)
            scanf("%lld", &a[i]), f[i][0] = g[i][0] = a[i];
        for (int i = 1; i < 20; ++i)
            for (int j = 1; j <= n - (1ll << i) + 1; ++j) {
                f[j][i] = min(f[j][i - 1], f[j + (1ll << (i - 1))][i - 1]);
                g[j][i] = max(g[j][i - 1], g[j + (1ll << (i - 1))][i - 1]);
            }
        F[0] = 0;
        for (int i = 1; i <= n; i++) {
            if (a[i]) {
                F[i] = F[i - 1] + 1;
                if (a[i] <= 2) {
                    int l = 1, r = i - 1, best = -1;
                    while (l <= r) {
                        int mid = l + r >> 1;
                        if (askmin(mid, i - 1) <= 2)
                            l = mid + 1, best = mid;
                        else
                            r = mid - 1;
                    }
                    if (best != -1 && askmax(best, i) <= 4 && ~(i - best + 1) & 1)
                        F[i] = min(F[i], F[best - 1] + (i - best + 1) - 1);
                }
            } else F[i] = F[i - 1];
        }
        printf("%lld\n", F[n]);
    }
    return 0;
}
posted @ 2024-07-21 09:48  yhbqwq  阅读(13)  评论(0编辑  收藏  举报