数值型特征的处理——分桶
特征工程中经常对数值型特征进行归一化来解决特征取值范围不统一的问题,但无法改变特征值的分布。
比如说对于电影的评分,由于人们打分有“中庸偏上“的倾向,因此评分大量集中在一个数值的附近,这样模型因为样本大量集中在一个区间,所以特征的区分度不高(都在一个值附近),模型的效果不好。
所以设置分割区间进行分桶,以桶的ID作为新的特征值,能有效提高特征的区分度。
分类:
机器学习
特征工程中经常对数值型特征进行归一化来解决特征取值范围不统一的问题,但无法改变特征值的分布。
比如说对于电影的评分,由于人们打分有“中庸偏上“的倾向,因此评分大量集中在一个数值的附近,这样模型因为样本大量集中在一个区间,所以特征的区分度不高(都在一个值附近),模型的效果不好。
所以设置分割区间进行分桶,以桶的ID作为新的特征值,能有效提高特征的区分度。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· winform 绘制太阳,地球,月球 运作规律
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人