hdu 3584 三维树状数组
Problem Description
Given an N*N*N cube A, whose elements are either 0 or 1. A[i, j, k] means the number in the i-th row , j-th column and k-th layer. Initially we have A[i, j, k] = 0 (1 <= i, j, k <= N).
We define two operations, 1: “Not” operation that we change the A[i, j, k]=!A[i, j, k]. that means we change A[i, j, k] from 0->1,or 1->0. (x1<=i<=x2,y1<=j<=y2,z1<=k<=z2).
0: “Query” operation we want to get the value of A[i, j, k].
We define two operations, 1: “Not” operation that we change the A[i, j, k]=!A[i, j, k]. that means we change A[i, j, k] from 0->1,or 1->0. (x1<=i<=x2,y1<=j<=y2,z1<=k<=z2).
0: “Query” operation we want to get the value of A[i, j, k].
Input
Multi-cases. First line contains N and M, M lines follow indicating the operation below. Each operation contains an X, the type of operation. 1: “Not” operation and 0: “Query” operation. If X is 1, following x1, y1, z1, x2, y2, z2. If X is 0, following x, y, z.
Output
For each query output A[x, y, z] in one line. (1<=n<=100 sum of m <=10000)
Sample Input
2 5
1 1 1 1 1 1 1
0 1 1 1
1 1 1 1 2 2 2
0 1 1 1
0 2 2 2
Sample Output
1
0
1
三维树状数组,单点修改。
想不明白画俩长方体就可以
#include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #include<queue> using namespace std; int sum[105][105][105]; int n; int lowbit(int x) { return x&(-x); } void updata(int x,int y,int z,int v ) { for(int i =x;i<=n;i+=lowbit(i)) for(int j=y;j<=n;j+=lowbit(j)) for(int k=z;k<=n;k+=lowbit(k)) sum[i][j][k]+=v; } int s(int x,int y,int z) { int res=0; for(int i =x;i>0;i-=lowbit(i)) for(int j=y;j>0;j-=lowbit(j)) for(int k=z;k>0;k-=lowbit(k)) res+=sum[i][j][k]; return res; } int main() { int m; while(~scanf("%d%d",&n,&m)) { memset(sum,0,sizeof(sum)); while(m--) { int q,x,y,z,j,k,l; scanf("%d",&q); if(q==1){ scanf("%d%d%d%d%d%d",&x,&y,&z,&j,&k,&l); updata(x,y,z,1); updata(x,y,l+1,1); updata(x,k+1,z,1); updata(x,k+1,l+1,1); updata(j+1,y,z,1); updata(j+1,y,l+1,1); updata(j+1,k+1,z,1); updata(j+1,k+1,l+1,1); } else { scanf("%d%d%d",&x,&y,&z); printf("%d\n",s(x,y,z)&1); } } } }