堆与堆排序
实现一个堆
实现堆并从堆顶依次取出元素的过程实现了一个简单的排序
#include <iostream>
#include <algorithm>
#include <string>
#include <ctime>
#include <cmath>
#include <cassert>
using namespace std;
template<typename Item>
class MaxHeap{
private:
Item *data;
int count;
int capacity;
void shiftUp(int k){
while( k > 1 && data[k/2] < data[k] ){
swap( data[k/2], data[k] );
k /= 2;
}
}
void shiftDown(int k){
while( 2*k <= count ){
int j = 2*k; // 在此轮循环中,data[k]和data[j]交换位置
if( j+1 <= count && data[j+1] > data[j] )
j ++;
// data[j] 是 data[2*k]和data[2*k+1]中的最大值
if( data[k] >= data[j] ) break;
swap( data[k] , data[j] );
k = j;
}
}
public:
// 构造函数, 构造一个空堆, 可容纳capacity个元素
MaxHeap(int capacity){
data = new Item[capacity+1];
count = 0;
this->capacity = capacity;
}
~MaxHeap(){
delete[] data;
}
// 返回堆中的元素个数
int size(){
return count;
}
// 返回一个布尔值, 表示堆中是否为空
bool isEmpty(){
return count == 0;
}
// 像最大堆中插入一个新的元素 item
void insert(Item item){
assert( count + 1 <= capacity );
data[count+1] = item;
shiftUp(count+1);
count ++;
}
// 从最大堆中取出堆顶元素, 即堆中所存储的最大数据
Item extractMax(){
assert( count > 0 );
Item ret = data[1];
swap( data[1] , data[count] );
count --;
shiftDown(1);
return ret;
}
// 获取最大堆中的堆顶元素
Item getMax(){
assert( count > 0 );
return data[1];
}
};
// 测试最大堆
int main() {
MaxHeap<int> maxheap = MaxHeap<int>(100);
srand(time(NULL));
int n = 100; // 随机生成n个元素放入最大堆中
for( int i = 0 ; i < n ; i ++ ){
maxheap.insert( rand()%100 );
}
int* arr = new int[n];
// 将maxheap中的数据逐渐使用extractMax取出来
// 取出来的顺序应该是按照从大到小的顺序取出来的
for( int i = 0 ; i < n ; i ++ ){
arr[i] = maxheap.extractMax();
cout<<arr[i]<<" ";
}
cout<<endl;
// 确保arr数组是从大到小排列的
for( int i = 1 ; i < n ; i ++ )
assert( arr[i-1] >= arr[i] );
delete[] arr;
return 0;
}
一段在控制台打印树的代码
// 以树状打印整个堆结构
void testPrint(){
// 我们的testPrint只能打印100个元素以内的堆的树状信息
if( size() >= 100 ){
cout<<"This print function can only work for less than 100 int";
return;
}
// 我们的testPrint只能处理整数信息
if( typeid(Item) != typeid(int) ){
cout <<"This print function can only work for int item";
return;
}
cout<<"The max heap size is: "<<size()<<endl;
cout<<"Data in the max heap: ";
for( int i = 1 ; i <= size() ; i ++ ){
// 我们的testPrint要求堆中的所有整数在[0, 100)的范围内
assert( data[i] >= 0 && data[i] < 100 );
cout<<data[i]<<" ";
}
cout<<endl;
cout<<endl;
int n = size();
int max_level = 0;
int number_per_level = 1;
while( n > 0 ) {
max_level += 1;
n -= number_per_level;
number_per_level *= 2;
}
int max_level_number = int(pow(2, max_level-1));
int cur_tree_max_level_number = max_level_number;
int index = 1;
for( int level = 0 ; level < max_level ; level ++ ){
string line1 = string(max_level_number*3-1, ' ');
int cur_level_number = min(count-int(pow(2,level))+1,int(pow(2,level)));
bool isLeft = true;
for( int index_cur_level = 0 ; index_cur_level < cur_level_number ; index ++ , index_cur_level ++ ){
putNumberInLine( data[index] , line1 , index_cur_level , cur_tree_max_level_number*3-1 , isLeft );
isLeft = !isLeft;
}
cout<<line1<<endl;
if( level == max_level - 1 )
break;
string line2 = string(max_level_number*3-1, ' ');
for( int index_cur_level = 0 ; index_cur_level < cur_level_number ; index_cur_level ++ )
putBranchInLine( line2 , index_cur_level , cur_tree_max_level_number*3-1 );
cout<<line2<<endl;
cur_tree_max_level_number /= 2;
}
}
private:
void putNumberInLine( int num, string &line, int index_cur_level, int cur_tree_width, bool isLeft){
int sub_tree_width = (cur_tree_width - 1) / 2;
int offset = index_cur_level * (cur_tree_width+1) + sub_tree_width;
assert(offset + 1 < line.size());
if( num >= 10 ) {
line[offset + 0] = '0' + num / 10;
line[offset + 1] = '0' + num % 10;
}
else{
if( isLeft)
line[offset + 0] = '0' + num;
else
line[offset + 1] = '0' + num;
}
}
void putBranchInLine( string &line, int index_cur_level, int cur_tree_width){
int sub_tree_width = (cur_tree_width - 1) / 2;
int sub_sub_tree_width = (sub_tree_width - 1) / 2;
int offset_left = index_cur_level * (cur_tree_width+1) + sub_sub_tree_width;
assert( offset_left + 1 < line.size() );
int offset_right = index_cur_level * (cur_tree_width+1) + sub_tree_width + 1 + sub_sub_tree_width;
assert( offset_right < line.size() );
line[offset_left + 1] = '/';
line[offset_right + 0] = '\\';
}
堆排序
一种是上面已经实现的排序
template<typename T>
void heapSort1(T arr[], int n){
MaxHeap<T> maxheap = MaxHeap<T>(n);
for( int i = 0 ; i < n ; i ++ )
maxheap.insert(arr[i]);
for( int i = n-1 ; i >= 0 ; i-- )
arr[i] = maxheap.extractMax();
}
heapSort1, 将所有的元素依次添加到堆中, 在将所有元素从堆中依次取出来, 即完成了排序,无论是创建堆的过程, 还是从堆中依次取出元素的过程, 时间复杂度均为O(nlogn),整个堆排序的整体时间复杂度为O(nlogn)
对其进行优化
// 构造函数, 通过一个给定数组创建一个最大堆
// 该构造堆的过程, 时间复杂度为O(n)
MaxHeap(Item arr[], int n){
data = new Item[n+1];
capacity = n;
for( int i = 0 ; i < n ; i ++ )
data[i+1] = arr[i];
count = n;
for( int i = count/2 ; i >= 1 ; i -- )
shiftDown(i);
}
template<typename T>
void heapSort2(T arr[], int n){
MaxHeap<T> maxheap = MaxHeap<T>(arr,n);
for( int i = n-1 ; i >= 0 ; i-- )
arr[i] = maxheap.extractMax();
}
heapSort2, 借助我们的heapify过程创建堆,此时, 创建堆的过程时间复杂度为O(n), 将所有元素依次从堆中取出来, 实践复杂度为O(nlogn),堆排序的总体时间复杂度依然是O(nlogn), 但是比上述heapSort1性能更优, 因为创建堆的性能更优
原地堆排序
// 不使用一个额外的最大堆, 直接在原数组上进行原地的堆排序
template<typename T>
void heapSort(T arr[], int n){
// 注意,此时的堆是从0开始索引的
// 从(最后一个元素的索引-1)/2开始
// 最后一个元素的索引 = n-1
for( int i = (n-1-1)/2 ; i >= 0 ; i -- )
__shiftDown2(arr, n, i);
for( int i = n-1; i > 0 ; i-- ){
swap( arr[0] , arr[i] );
__shiftDown2(arr, i, 0);
}
}
// 优化的shiftDown过程, 使用赋值的方式取代不断的swap,
// 该优化思想和我们之前对插入排序进行优化的思路是一致的
template<typename T>
void __shiftDown2(T arr[], int n, int k){
T e = arr[k];
while( 2*k+1 < n ){
int j = 2*k+1;
if( j+1 < n && arr[j+1] > arr[j] )
j += 1;
if( e >= arr[j] ) break;
arr[k] = arr[j];
k = j;
}
arr[k] = e;
}
索引堆
#include <iostream>
#include <cassert>
#include "SortTestHelper.h"
using namespace std;
// 最大索引堆
template<typename Item>
class IndexMaxHeap{
private:
Item *data; // 最大索引堆中的数据
int *indexes; // 最大索引堆中的索引
int count;
int capacity;
// 索引堆中, 数据之间的比较根据data的大小进行比较, 但实际操作的是索引
void shiftUp( int k ){
while( k > 1 && data[indexes[k/2]] < data[indexes[k]] ){
swap( indexes[k/2] , indexes[k] );
k /= 2;
}
}
// 索引堆中, 数据之间的比较根据data的大小进行比较, 但实际操作的是索引
void shiftDown( int k ){
while( 2*k <= count ){
int j = 2*k;
if( j + 1 <= count && data[indexes[j+1]] > data[indexes[j]] )
j += 1;
if( data[indexes[k]] >= data[indexes[j]] )
break;
swap( indexes[k] , indexes[j] );
k = j;
}
}
public:
// 构造函数, 构造一个空的索引堆, 可容纳capacity个元素
IndexMaxHeap(int capacity){
data = new Item[capacity+1];
indexes = new int[capacity+1];
count = 0;
this->capacity = capacity;
}
~IndexMaxHeap(){
delete[] data;
delete[] indexes;
}
// 返回索引堆中的元素个数
int size(){
return count;
}
// 返回一个布尔值, 表示索引堆中是否为空
bool isEmpty(){
return count == 0;
}
// 向最大索引堆中插入一个新的元素, 新元素的索引为i, 元素为item
// 传入的i对用户而言,是从0索引的
void insert(int i, Item item){
assert( count + 1 <= capacity );
assert( i + 1 >= 1 && i + 1 <= capacity );
i += 1;
data[i] = item;
indexes[count+1] = i;
count++;
shiftUp(count);
}
// 从最大索引堆中取出堆顶元素, 即索引堆中所存储的最大数据
Item extractMax(){
assert( count > 0 );
Item ret = data[indexes[1]];
swap( indexes[1] , indexes[count] );
count--;
shiftDown(1);
return ret;
}
// 从最大索引堆中取出堆顶元素的索引
int extractMaxIndex(){
assert( count > 0 );
int ret = indexes[1] - 1;
swap( indexes[1] , indexes[count] );
count--;
shiftDown(1);
return ret;
}
// 获取最大索引堆中的堆顶元素
Item getMax(){
assert( count > 0 );
return data[indexes[1]];
}
// 获取最大索引堆中的堆顶元素的索引
int getMaxIndex(){
assert( count > 0 );
return indexes[1]-1;
}
// 获取最大索引堆中索引为i的元素
Item getItem( int i ){
assert( i + 1 >= 1 && i + 1 <= capacity );
return data[i+1];
}
// 将最大索引堆中索引为i的元素修改为newItem
void change( int i , Item newItem ){
i += 1;
data[i] = newItem;
// 找到indexes[j] = i, j表示data[i]在堆中的位置
// 之后shiftUp(j), 再shiftDown(j)
for( int j = 1 ; j <= count ; j ++ )
if( indexes[j] == i ){
shiftUp(j);
shiftDown(j);
return;
}
}
// 测试索引堆中的索引数组index
// 注意:这个测试在向堆中插入元素以后, 不进行extract操作有效
bool testIndexes(){
int *copyIndexes = new int[count+1];
for( int i = 0 ; i <= count ; i ++ )
copyIndexes[i] = indexes[i];
copyIndexes[0] = 0;
std::sort(copyIndexes, copyIndexes + count + 1);
// 在对索引堆中的索引进行排序后, 应该正好是1...count这count个索引
bool res = true;
for( int i = 1 ; i <= count ; i ++ )
if( copyIndexes[i-1] + 1 != copyIndexes[i] ){
res = false;
break;
}
delete[] copyIndexes;
if( !res ){
cout<<"Error!"<<endl;
return false;
}
return true;
}
};
反向查找表
#include <iostream>
#include <cassert>
#include "SortTestHelper.h"
using namespace std;
// 最大索引堆
template<typename Item>
class IndexMaxHeap{
private:
Item *data; // 最大索引堆中的数据
int *indexes; // 最大索引堆中的索引, indexes[x] = i 表示索引i在x的位置
int *reverse; // 最大索引堆中的反向索引, reverse[i] = x 表示索引i在x的位置
int count;
int capacity;
// 索引堆中, 数据之间的比较根据data的大小进行比较, 但实际操作的是索引
void shiftUp( int k ){
while( k > 1 && data[indexes[k/2]] < data[indexes[k]] ){
swap( indexes[k/2] , indexes[k] );
reverse[indexes[k/2]] = k/2;
reverse[indexes[k]] = k;
k /= 2;
}
}
// 索引堆中, 数据之间的比较根据data的大小进行比较, 但实际操作的是索引
void shiftDown( int k ){
while( 2*k <= count ){
int j = 2*k;
if( j + 1 <= count && data[indexes[j+1]] > data[indexes[j]] )
j += 1;
if( data[indexes[k]] >= data[indexes[j]] )
break;
swap( indexes[k] , indexes[j] );
reverse[indexes[k]] = k;
reverse[indexes[j]] = j;
k = j;
}
}
public:
// 构造函数, 构造一个空的索引堆, 可容纳capacity个元素
IndexMaxHeap(int capacity){
data = new Item[capacity+1];
indexes = new int[capacity+1];
reverse = new int[capacity+1];
for( int i = 0 ; i <= capacity ; i ++ )
reverse[i] = 0;
count = 0;
this->capacity = capacity;
}
~IndexMaxHeap(){
delete[] data;
delete[] indexes;
delete[] reverse;
}
// 返回索引堆中的元素个数
int size(){
return count;
}
// 返回一个布尔值, 表示索引堆中是否为空
bool isEmpty(){
return count == 0;
}
// 向最大索引堆中插入一个新的元素, 新元素的索引为i, 元素为item
// 传入的i对用户而言,是从0索引的
void insert(int i, Item item){
assert( count + 1 <= capacity );
assert( i + 1 >= 1 && i + 1 <= capacity );
// 再插入一个新元素前,还需要保证索引i所在的位置是没有元素的。
assert( !contain(i) );
i += 1;
data[i] = item;
indexes[count+1] = i;
reverse[i] = count+1;
count++;
shiftUp(count);
}
// 从最大索引堆中取出堆顶元素, 即索引堆中所存储的最大数据
Item extractMax(){
assert( count > 0 );
Item ret = data[indexes[1]];
swap( indexes[1] , indexes[count] );
reverse[indexes[count]] = 0;
count--;
if(count){
reverse[indexes[1]] = 1;
shiftDown(1);
}
return ret;
}
// 从最大索引堆中取出堆顶元素的索引
int extractMaxIndex(){
assert( count > 0 );
int ret = indexes[1] - 1;
swap( indexes[1] , indexes[count] );
reverse[indexes[count]] = 0;
count--;
if(count) {
reverse[indexes[1]] = 1;
shiftDown(1);
}
return ret;
}
// 获取最大索引堆中的堆顶元素
Item getMax(){
assert( count > 0 );
return data[indexes[1]];
}
// 获取最大索引堆中的堆顶元素的索引
int getMaxIndex(){
assert( count > 0 );
return indexes[1]-1;
}
// 看索引i所在的位置是否存在元素
bool contain( int i ){
assert( i + 1 >= 1 && i + 1 <= capacity );
return reverse[i+1] != 0;
}
// 获取最大索引堆中索引为i的元素
Item getItem( int i ){
assert( contain(i) );
return data[i+1];
}
// 将最大索引堆中索引为i的元素修改为newItem
void change( int i , Item newItem ){
assert( contain(i) );
i += 1;
data[i] = newItem;
// 有了 reverse 之后,
// 我们可以非常简单的通过reverse直接定位索引i在indexes中的位置
shiftUp( reverse[i] );
shiftDown( reverse[i] );
}
// 测试索引堆中的索引数组index和反向数组reverse
// 注意:这个测试在向堆中插入元素以后, 不进行extract操作有效
bool testIndexesAndReverseIndexes(){
int *copyIndexes = new int[count+1];
int *copyReverseIndexes = new int[count+1];
for( int i = 0 ; i <= count ; i ++ ){
copyIndexes[i] = indexes[i];
copyReverseIndexes[i] = reverse[i];
}
copyIndexes[0] = copyReverseIndexes[0] = 0;
std::sort(copyIndexes, copyIndexes + count + 1);
std::sort(copyReverseIndexes, copyReverseIndexes + count + 1);
// 在对索引堆中的索引和反向索引进行排序后,
// 两个数组都应该正好是1...count这count个索引
bool res = true;
for( int i = 1 ; i <= count ; i ++ )
if( copyIndexes[i-1] + 1 != copyIndexes[i] ||
copyReverseIndexes[i-1] + 1 != copyReverseIndexes[i] ){
res = false;
break;
}
delete[] copyIndexes;
delete[] copyReverseIndexes;
if( !res ){
cout<<"Error!"<<endl;
return false;
}
for( int i = 1 ; i <= count ; i ++ )
if( reverse[ indexes[i] ] != i ){
cout<<"Error 2"<<endl;
return false;
}
return true;
}
};
最小堆
#include <algorithm>
#include <cassert>
using namespace std;
// 最小堆
template<typename Item>
class MinHeap{
private:
Item *data;
int count;
int capacity;
void shiftUp(int k){
while( k > 1 && data[k/2] > data[k] ){
swap( data[k/2], data[k] );
k /= 2;
}
}
void shiftDown(int k){
while( 2*k <= count ){
int j = 2*k;
if( j+1 <= count && data[j+1] < data[j] ) j ++;
if( data[k] <= data[j] ) break;
swap( data[k] , data[j] );
k = j;
}
}
public:
// 构造函数, 构造一个空堆, 可容纳capacity个元素
MinHeap(int capacity){
data = new Item[capacity+1];
count = 0;
this->capacity = capacity;
}
// 构造函数, 通过一个给定数组创建一个最小堆
// 该构造堆的过程, 时间复杂度为O(n)
MinHeap(Item arr[], int n){
data = new Item[n+1];
capacity = n;
for( int i = 0 ; i < n ; i ++ )
data[i+1] = arr[i];
count = n;
for( int i = count/2 ; i >= 1 ; i -- )
shiftDown(i);
}
~MinHeap(){
delete[] data;
}
// 返回堆中的元素个数
int size(){
return count;
}
// 返回一个布尔值, 表示堆中是否为空
bool isEmpty(){
return count == 0;
}
// 向最小堆中插入一个新的元素 item
void insert(Item item){
assert( count + 1 <= capacity );
data[count+1] = item;
shiftUp(count+1);
count ++;
}
// 从最小堆中取出堆顶元素, 即堆中所存储的最小数据
Item extractMin(){
assert( count > 0 );
Item ret = data[1];
swap( data[1] , data[count] );
count --;
shiftDown(1);
return ret;
}
// 获取最小堆中的堆顶元素
Item getMin(){
assert( count > 0 );
return data[1];
}
};
索引最小堆
#include <iostream>
#include <algorithm>
#include <cassert>
using namespace std;
// 最小索引堆
template<typename Item>
class IndexMinHeap{
private:
Item *data; // 最小索引堆中的数据
int *indexes; // 最小索引堆中的索引, indexes[x] = i 表示索引i在x的位置
int *reverse; // 最小索引堆中的反向索引, reverse[i] = x 表示索引i在x的位置
int count;
int capacity;
// 索引堆中, 数据之间的比较根据data的大小进行比较, 但实际操作的是索引
void shiftUp( int k ){
while( k > 1 && data[indexes[k/2]] > data[indexes[k]] ){
swap( indexes[k/2] , indexes[k] );
reverse[indexes[k/2]] = k/2;
reverse[indexes[k]] = k;
k /= 2;
}
}
// 索引堆中, 数据之间的比较根据data的大小进行比较, 但实际操作的是索引
void shiftDown( int k ){
while( 2*k <= count ){
int j = 2*k;
if( j + 1 <= count && data[indexes[j]] > data[indexes[j+1]] )
j += 1;
if( data[indexes[k]] <= data[indexes[j]] )
break;
swap( indexes[k] , indexes[j] );
reverse[indexes[k]] = k;
reverse[indexes[j]] = j;
k = j;
}
}
public:
// 构造函数, 构造一个空的索引堆, 可容纳capacity个元素
IndexMinHeap(int capacity){
data = new Item[capacity+1];
indexes = new int[capacity+1];
reverse = new int[capacity+1];
for( int i = 0 ; i <= capacity ; i ++ )
reverse[i] = 0;
count = 0;
this->capacity = capacity;
}
~IndexMinHeap(){
delete[] data;
delete[] indexes;
delete[] reverse;
}
// 返回索引堆中的元素个数
int size(){
return count;
}
// 返回一个布尔值, 表示索引堆中是否为空
bool isEmpty(){
return count == 0;
}
// 向最小索引堆中插入一个新的元素, 新元素的索引为i, 元素为item
// 传入的i对用户而言,是从0索引的
void insert(int index, Item item){
assert( count + 1 <= capacity );
assert( index + 1 >= 1 && index + 1 <= capacity );
index += 1;
data[index] = item;
indexes[count+1] = index;
reverse[index] = count+1;
count++;
shiftUp(count);
}
// 从最小索引堆中取出堆顶元素, 即索引堆中所存储的最小数据
Item extractMin(){
assert( count > 0 );
Item ret = data[indexes[1]];
swap( indexes[1] , indexes[count] );
reverse[indexes[count]] = 0;
count--;
if(count){
reverse[indexes[1]] = 1;
shiftDown(1);
}
return ret;
}
// 从最小索引堆中取出堆顶元素的索引
int extractMinIndex(){
assert( count > 0 );
int ret = indexes[1] - 1;
swap( indexes[1] , indexes[count] );
reverse[indexes[count]] = 0;
count--;
if(count){
reverse[indexes[1]] = 1;
shiftDown(1);
}
return ret;
}
// 获取最小索引堆中的堆顶元素
Item getMin(){
assert( count > 0 );
return data[indexes[1]];
}
// 获取最小索引堆中的堆顶元素的索引
int getMinIndex(){
assert( count > 0 );
return indexes[1]-1;
}
// 看索引i所在的位置是否存在元素
bool contain( int index ){
return reverse[index+1] != 0;
}
// 获取最小索引堆中索引为i的元素
Item getItem( int index ){
assert( contain(index) );
return data[index+1];
}
// 将最小索引堆中索引为i的元素修改为newItem
void change( int index , Item newItem ){
assert( contain(index) );
index += 1;
data[index] = newItem;
shiftUp( reverse[index] );
shiftDown( reverse[index] );
}
};
♪(^∇^*)♪(^∇^*)(~ ̄▽ ̄)~有没有感觉很棒呀!!!(#^.^#),(*^▽^*)O(∩_∩)O哈哈~