【LeetCode】【动态规划】Edit Distance

描述

Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.

You have the following 3 operations permitted on a word:

  1. Insert a character
  2. Delete a character
  3. Replace a character

Example 1:

Input: word1 = "horse", word2 = "ros"
Output: 3
Explanation: 
horse -> rorse (replace 'h' with 'r')
rorse -> rose (remove 'r')
rose -> ros (remove 'e')

Example 2:

Input: word1 = "intention", word2 = "execution"
Output: 5
Explanation: 
intention -> inention (remove 't')
inention -> enention (replace 'i' with 'e')
enention -> exention (replace 'n' with 'x')
exention -> exection (replace 'n' with 'c')
exection -> execution (insert 'u')

 

思路:动态规划

这是一个经典的动态规划问题,思路参考斯坦福的课程:http://www.stanford.edu/class/cs124/lec/med.pdf

这里把加2变成加1即可

 

  1. dp[i][0] = i;
  2. dp[0][j] = j;
  3. dp[i][j] = dp[i - 1][j - 1], if word1[i - 1] = word2[j - 1];
  4. dp[i][j] = min(dp[i - 1][j - 1] + 1, dp[i - 1][j] + 1, dp[i][j - 1] + 1), otherwise.

 

class Solution {
public:
    int minDistance(string word1, string word2) {
        int m = word1.size(), n = word2.size();
        vector<vector<int> > dp(m+1, vector<int>(n+1, 0));
        for(int i = 1;i<=m;++i)
            dp[i][0] = i;
        for(int i = 1;i<=n;++i)
            dp[0][i] = i;
        for(int i = 1;i<=m;++i){
            for(int j = 1;j<=n;++j){
                if(word1[i-1] == word2[j-1])
                    dp[i][j] = dp[i-1][j-1];
                else
                    dp[i][j] = min(dp[i-1][j-1], min(dp[i][j-1], dp[i-1][j])) + 1;
            }
        }
        return dp[m][n];
    }
};

 

posted @ 2018-10-16 16:30  华不摇曳  阅读(172)  评论(0编辑  收藏  举报