HashMap源码分析_JDK1.8.0_191

HashMap JDK1.8


 

HashMap使用拉链法解决哈希冲突,允许空键空值不具备线程安全的特性。

HashMap不保证map元素的顺序。特别的是,不保证元素顺序随时间推移保持不变。


 HashMap与Hashtable大致等同,除了:

1.Hashtable线程安全,HashMap不是线程安全

2.Hashtable不允许使用null作为键和值,而HashMap允许


HashMap的变量

1.transient Node<K, V>[] table;

散列表,第一次使用时初始化,元素数量超过threshold时扩容。每个扩容为原来的两倍。

2.transient int modCount;

记录结构化修改,以便支持fail-fast机制。fail-fast用于iterator迭代器。

3.int threshold;

阈值threshold = capacity * load factor 

4.final float loadFactor;

负载因子


HashMap的方法

1.putVal():HashMap的put操作的核心方法

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
               boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
//首先初始化table,table是在使用时才进行初始化的
if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length;
//如果对应的桶为null,则直接新建根节点
if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newNode(hash, key, value, null); else { Node<K,V> e; K k;
//如果key是头节点,则直接获得头节点
if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) e = p;
//如果是红黑树
else if (p instanceof TreeNode) e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); else {
       //如果是链表
for (int binCount = 0; ; ++binCount) {
//尾插法插入新节点
if ((e = p.next) == null) { p.next = newNode(hash, key, value, null); if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash); break; }
//如果当前节点是key对应的节点,获得该节点
if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; } }
//修改节点值
if (e != null) { // existing mapping for key V oldValue = e.value; if (!onlyIfAbsent || oldValue == null) e.value = value; afterNodeAccess(e); return oldValue; } }
//记录结构化修改
++modCount; if (++size > threshold) resize();
//钩子函数 afterNodeInsertion(evict);
return null; }

2.resize():表初始化操作和扩容操作的核心方法

final Node<K,V>[] resize() {
    Node<K,V>[] oldTab = table;
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold;
    int newCap, newThr = 0;
//算出新表的容量和新表的阈值
if (oldCap > 0) { if (oldCap >= MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return oldTab; } else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) newThr = oldThr << 1; // double threshold } else if (oldThr > 0) // initial capacity was placed in threshold newCap = oldThr; else { // zero initial threshold signifies using defaults
     //HashMap初始化 newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } if (newThr == 0) { float ft = (float)newCap * loadFactor; newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } threshold = newThr; @SuppressWarnings({"rawtypes","unchecked"}) Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; table = newTab;
//扩容
if (oldTab != null) {
//遍历桶数组
for (int j = 0; j < oldCap; ++j) { Node<K,V> e; if ((e = oldTab[j]) != null) { oldTab[j] = null;
//如果只有一个元素
if (e.next == null) newTab[e.hash & (newCap - 1)] = e;
//如果是红黑树
else if (e instanceof TreeNode) ((TreeNode<K,V>)e).split(this, newTab, j, oldCap); else { // preserve order
//如果是链表,则遍历所有链表节点 Node<K,V> loHead = null, loTail = null; Node<K,V> hiHead = null, hiTail = null; Node<K,V> next; do { next = e.next;
//这里没有直接用取余操作,简化的运算
if ((e.hash & oldCap) == 0) { if (loTail == null) loHead = e; else loTail.next = e; loTail = e; } else { if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null); if (loTail != null) { loTail.next = null; newTab[j] = loHead; } if (hiTail != null) { hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } } return newTab; }

treeifyBin():将Node节点替换成TreeNode节点

final void treeifyBin(Node<K,V>[] tab, int hash) {
    int n, index; Node<K,V> e;
//如果table的长度没有达到最小树化容量,则进行扩容操作,而不是树化
if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY) resize(); else if ((e = tab[index = (n - 1) & hash]) != null) { TreeNode<K,V> hd = null, tl = null; do { TreeNode<K,V> p = replacementTreeNode(e, null); if (tl == null) hd = p; else { p.prev = tl; tl.next = p; } tl = p; } while ((e = e.next) != null); if ((tab[index] = hd) != null) hd.treeify(tab); } }

3.getNode:获取元素的核心方法

final Node<K,V> getNode(int hash, Object key) {
    Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
//判断表是否为空,表容量是否为0,对应的桶是否为null
if ((tab = table) != null && (n = tab.length) > 0 && (first = tab[(n - 1) & hash]) != null) {
     //检查第一个是否为key
if (first.hash == hash && // always check first node ((k = first.key) == key || (key != null && key.equals(k)))) return first;
//第一个不为key
if ((e = first.next) !=H null) {
//是否为红黑树
if (first instanceof TreeNode) return ((TreeNode<K,V>)first).getTreeNode(hash, key);
do {
//遍历链表,若hash相等且key相等
if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) return e; } while ((e = e.next) != null); } } return null; }

 6.removeNode():移除操作的核心方法

final Node<K,V> removeNode(int hash, Object key, Object value,
                           boolean matchValue, boolean movable) {
    Node<K,V>[] tab; Node<K,V> p; int n, index;
//如果表不为null,且表长度大于0
if ((tab = table) != null && (n = tab.length) > 0 && (p = tab[index = (n - 1) & hash]) != null) { Node<K,V> node = null, e; K k; V v;
//如果桶对应的头节点为key
if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) node = p; else if ((e = p.next) != null) {
//如果是红黑树
if (p instanceof TreeNode) node = ((TreeNode<K,V>)p).getTreeNode(hash, key); else {
//遍历链表查找key对应的节点
do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { node = e; break; } p = e; } while ((e = e.next) != null); } }
//移除节点
if (node != null && (!matchValue || (v = node.value) == value || (value != null && value.equals(v)))) { if (node instanceof TreeNode) ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable); else if (node == p) tab[index] = node.next; else p.next = node.next; ++modCount; --size; afterNodeRemoval(node); return node; } } return null; }

 7.hash():取哈希值的方法

static final int hash(Object key) {
    int h;
//新哈希值的高16位是原哈希值的高16位
//新哈希值的低16位是原哈希值的高16位和低16位的与值,以此减少哈希碰撞
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); }

8.tableSizeFor():求得大于[用户设置的capacity]的最小2的指数幂

static final int tableSizeFor(int cap) {
//减1是为了防止cap已经是2的指数幂
int n = cap - 1;
//这些操作使cap第1个为1的位之后所有的位都为1,即求得我们所需的数 n
|= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16; return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1; }

在HashMap的散列表中,若有桶对应的链表的节点数量大于8个(默认值),链表结构将转化为红黑树,以减小链式存储结构在数据量较大时的查询开销。

HashMap中红黑树的实现源码:

static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
    TreeNode<K,V> parent;  // red-black tree links
    TreeNode<K,V> left;
    TreeNode<K,V> right;
    TreeNode<K,V> prev;    // needed to unlink next upon deletion
    boolean red;
    TreeNode(int hash, K key, V val, Node<K,V> next) {
        super(hash, key, val, next);
    }
    /**
     * Returns root of tree containing this node.
     */
    final TreeNode<K,V> root() {
        for (TreeNode<K,V> r = this, p;;) {
            if ((p = r.parent) == null)
                return r;
            r = p;
        }
    }
    /**
     * Ensures that the given root is the first node of its bin.
     */
    static <K,V> void moveRootToFront(Node<K,V>[] tab, TreeNode<K,V> root) {
        int n;
        if (root != null && tab != null && (n = tab.length) > 0) {
            int index = (n - 1) & root.hash;
            TreeNode<K,V> first = (TreeNode<K,V>)tab[index];
            if (root != first) {
                Node<K,V> rn;
                tab[index] = root;
                TreeNode<K,V> rp = root.prev;
                if ((rn = root.next) != null)
                    ((TreeNode<K,V>)rn).prev = rp;
                if (rp != null)
                    rp.next = rn;
                if (first != null)
                    first.prev = root;
                root.next = first;
                root.prev = null;
            }
            assert checkInvariants(root);
        }
    }
    /**
     * Finds the node starting at root p with the given hash and key.
     * The kc argument caches comparableClassFor(key) upon first use
     * comparing keys.
     */
    final TreeNode<K,V> find(int h, Object k, Class<?> kc) {
        TreeNode<K,V> p = this;
        do {
            int ph, dir; K pk;
            TreeNode<K,V> pl = p.left, pr = p.right, q;
            if ((ph = p.hash) > h)
                p = pl;
            else if (ph < h)
                p = pr;
            else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                return p;
            else if (pl == null)
                p = pr;
            else if (pr == null)
                p = pl;
            else if ((kc != null ||
                      (kc = comparableClassFor(k)) != null) &&
                     (dir = compareComparables(kc, k, pk)) != 0)
                p = (dir < 0) ? pl : pr;
            else if ((q = pr.find(h, k, kc)) != null)
                return q;
            else
                p = pl;
        } while (p != null);
        return null;
    }
    /**
     * Calls find for root node.
     */
    final TreeNode<K,V> getTreeNode(int h, Object k) {
        return ((parent != null) ? root() : this).find(h, k, null);
    }
    /**
     * Tie-breaking utility for ordering insertions when equal
     * hashCodes and non-comparable. We don't require a total
     * order, just a consistent insertion rule to maintain
     * equivalence across rebalancings. Tie-breaking further than
     * necessary simplifies testing a bit.
     */
    static int tieBreakOrder(Object a, Object b) {
        int d;
        if (a == null || b == null ||
            (d = a.getClass().getName().
             compareTo(b.getClass().getName())) == 0)
            d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
                 -1 : 1);
        return d;
    }
    /**
     * Forms tree of the nodes linked from this node.
     * @return root of tree
     */
    final void treeify(Node<K,V>[] tab) {
        TreeNode<K,V> root = null;
        for (TreeNode<K,V> x = this, next; x != null; x = next) {
            next = (TreeNode<K,V>)x.next;
            x.left = x.right = null;
            if (root == null) {
                x.parent = null;
                x.red = false;
                root = x;
            }
            else {
                K k = x.key;
                int h = x.hash;
                Class<?> kc = null;
                for (TreeNode<K,V> p = root;;) {
                    int dir, ph;
                    K pk = p.key;
                    if ((ph = p.hash) > h)
                        dir = -1;
                    else if (ph < h)
                        dir = 1;
                    else if ((kc == null &&
                              (kc = comparableClassFor(k)) == null) ||
                             (dir = compareComparables(kc, k, pk)) == 0)
                        dir = tieBreakOrder(k, pk);
                    TreeNode<K,V> xp = p;
                    if ((p = (dir <= 0) ? p.left : p.right) == null) {
                        x.parent = xp;
                        if (dir <= 0)
                            xp.left = x;
                        else
                            xp.right = x;
                        root = balanceInsertion(root, x);
                        break;
                    }
                }
            }
        }
        moveRootToFront(tab, root);
    }
    /**
     * Returns a list of non-TreeNodes replacing those linked from
     * this node.
     */
    final Node<K,V> untreeify(HashMap<K,V> map) {
        Node<K,V> hd = null, tl = null;
        for (Node<K,V> q = this; q != null; q = q.next) {
            Node<K,V> p = map.replacementNode(q, null);
            if (tl == null)
                hd = p;
            else
                tl.next = p;
            tl = p;
        }
        return hd;
    }
    /**
     * Tree version of putVal.
     */
    final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
                                   int h, K k, V v) {
        Class<?> kc = null;
        boolean searched = false;
        TreeNode<K,V> root = (parent != null) ? root() : this;
        for (TreeNode<K,V> p = root;;) {
            int dir, ph; K pk;
            if ((ph = p.hash) > h)
                dir = -1;
            else if (ph < h)
                dir = 1;
            else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                return p;
            else if ((kc == null &&
                      (kc = comparableClassFor(k)) == null) ||
                     (dir = compareComparables(kc, k, pk)) == 0) {
                if (!searched) {
                    TreeNode<K,V> q, ch;
                    searched = true;
                    if (((ch = p.left) != null &&
                         (q = ch.find(h, k, kc)) != null) ||
                        ((ch = p.right) != null &&
                         (q = ch.find(h, k, kc)) != null))
                        return q;
                }
                dir = tieBreakOrder(k, pk);
            }
            TreeNode<K,V> xp = p;
            if ((p = (dir <= 0) ? p.left : p.right) == null) {
                Node<K,V> xpn = xp.next;
                TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
                if (dir <= 0)
                    xp.left = x;
                else
                    xp.right = x;
                xp.next = x;
                x.parent = x.prev = xp;
                if (xpn != null)
                    ((TreeNode<K,V>)xpn).prev = x;
                moveRootToFront(tab, balanceInsertion(root, x));
                return null;
            }
        }
    }
    /**
     * Removes the given node, that must be present before this call.
     * This is messier than typical red-black deletion code because we
     * cannot swap the contents of an interior node with a leaf
     * successor that is pinned by "next" pointers that are accessible
     * independently during traversal. So instead we swap the tree
     * linkages. If the current tree appears to have too few nodes,
     * the bin is converted back to a plain bin. (The test triggers
     * somewhere between 2 and 6 nodes, depending on tree structure).
     */
    final void removeTreeNode(HashMap<K,V> map, Node<K,V>[] tab,
                              boolean movable) {
        int n;
        if (tab == null || (n = tab.length) == 0)
            return;
        int index = (n - 1) & hash;
        TreeNode<K,V> first = (TreeNode<K,V>)tab[index], root = first, rl;
        TreeNode<K,V> succ = (TreeNode<K,V>)next, pred = prev;
        if (pred == null)
            tab[index] = first = succ;
        else
            pred.next = succ;
        if (succ != null)
            succ.prev = pred;
        if (first == null)
            return;
        if (root.parent != null)
            root = root.root();
        if (root == null || root.right == null ||
            (rl = root.left) == null || rl.left == null) {
            tab[index] = first.untreeify(map);  // too small
            return;
        }
        TreeNode<K,V> p = this, pl = left, pr = right, replacement;
        if (pl != null && pr != null) {
            TreeNode<K,V> s = pr, sl;
            while ((sl = s.left) != null) // find successor
                s = sl;
            boolean c = s.red; s.red = p.red; p.red = c; // swap colors
            TreeNode<K,V> sr = s.right;
            TreeNode<K,V> pp = p.parent;
            if (s == pr) { // p was s's direct parent
                p.parent = s;
                s.right = p;
            }
            else {
                TreeNode<K,V> sp = s.parent;
                if ((p.parent = sp) != null) {
                    if (s == sp.left)
                        sp.left = p;
                    else
                        sp.right = p;
                }
                if ((s.right = pr) != null)
                    pr.parent = s;
            }
            p.left = null;
            if ((p.right = sr) != null)
                sr.parent = p;
            if ((s.left = pl) != null)
                pl.parent = s;
            if ((s.parent = pp) == null)
                root = s;
            else if (p == pp.left)
                pp.left = s;
            else
                pp.right = s;
            if (sr != null)
                replacement = sr;
            else
                replacement = p;
        }
        else if (pl != null)
            replacement = pl;
        else if (pr != null)
            replacement = pr;
        else
            replacement = p;
        if (replacement != p) {
            TreeNode<K,V> pp = replacement.parent = p.parent;
            if (pp == null)
                root = replacement;
            else if (p == pp.left)
                pp.left = replacement;
            else
                pp.right = replacement;
            p.left = p.right = p.parent = null;
        }
        TreeNode<K,V> r = p.red ? root : balanceDeletion(root, replacement);
        if (replacement == p) {  // detach
            TreeNode<K,V> pp = p.parent;
            p.parent = null;
            if (pp != null) {
                if (p == pp.left)
                    pp.left = null;
                else if (p == pp.right)
                    pp.right = null;
            }
        }
        if (movable)
            moveRootToFront(tab, r);
    }
    /**
     * Splits nodes in a tree bin into lower and upper tree bins,
     * or untreeifies if now too small. Called only from resize;
     * see above discussion about split bits and indices.
     *
     * @param map the map
     * @param tab the table for recording bin heads
     * @param index the index of the table being split
     * @param bit the bit of hash to split on
     */
    final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
        TreeNode<K,V> b = this;
        // Relink into lo and hi lists, preserving order
        TreeNode<K,V> loHead = null, loTail = null;
        TreeNode<K,V> hiHead = null, hiTail = null;
        int lc = 0, hc = 0;
        for (TreeNode<K,V> e = b, next; e != null; e = next) {
            next = (TreeNode<K,V>)e.next;
            e.next = null;
            if ((e.hash & bit) == 0) {
                if ((e.prev = loTail) == null)
                    loHead = e;
                else
                    loTail.next = e;
                loTail = e;
                ++lc;
            }
            else {
                if ((e.prev = hiTail) == null)
                    hiHead = e;
                else
                    hiTail.next = e;
                hiTail = e;
                ++hc;
            }
        }
        if (loHead != null) {
            if (lc <= UNTREEIFY_THRESHOLD)
                tab[index] = loHead.untreeify(map);
            else {
                tab[index] = loHead;
                if (hiHead != null) // (else is already treeified)
                    loHead.treeify(tab);
            }
        }
        if (hiHead != null) {
            if (hc <= UNTREEIFY_THRESHOLD)
                tab[index + bit] = hiHead.untreeify(map);
            else {
                tab[index + bit] = hiHead;
                if (loHead != null)
                    hiHead.treeify(tab);
            }
        }
    }
    /* ------------------------------------------------------------ */
    // Red-black tree methods, all adapted from CLR
    static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
                                          TreeNode<K,V> p) {
        TreeNode<K,V> r, pp, rl;
        if (p != null && (r = p.right) != null) {
            if ((rl = p.right = r.left) != null)
                rl.parent = p;
            if ((pp = r.parent = p.parent) == null)
                (root = r).red = false;
            else if (pp.left == p)
                pp.left = r;
            else
                pp.right = r;
            r.left = p;
            p.parent = r;
        }
        return root;
    }
    static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
                                           TreeNode<K,V> p) {
        TreeNode<K,V> l, pp, lr;
        if (p != null && (l = p.left) != null) {
            if ((lr = p.left = l.right) != null)
                lr.parent = p;
            if ((pp = l.parent = p.parent) == null)
                (root = l).red = false;
            else if (pp.right == p)
                pp.right = l;
            else
                pp.left = l;
            l.right = p;
            p.parent = l;
        }
        return root;
    }
    static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
                                                TreeNode<K,V> x) {
        x.red = true;
        for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
            if ((xp = x.parent) == null) {
                x.red = false;
                return x;
            }
            else if (!xp.red || (xpp = xp.parent) == null)
                return root;
            if (xp == (xppl = xpp.left)) {
                if ((xppr = xpp.right) != null && xppr.red) {
                    xppr.red = false;
                    xp.red = false;
                    xpp.red = true;
                    x = xpp;
                }
                else {
                    if (x == xp.right) {
                        root = rotateLeft(root, x = xp);
                        xpp = (xp = x.parent) == null ? null : xp.parent;
                    }
                    if (xp != null) {
                        xp.red = false;
                        if (xpp != null) {
                            xpp.red = true;
                            root = rotateRight(root, xpp);
                        }
                    }
                }
            }
            else {
                if (xppl != null && xppl.red) {
                    xppl.red = false;
                    xp.red = false;
                    xpp.red = true;
                    x = xpp;
                }
                else {
                    if (x == xp.left) {
                        root = rotateRight(root, x = xp);
                        xpp = (xp = x.parent) == null ? null : xp.parent;
                    }
                    if (xp != null) {
                        xp.red = false;
                        if (xpp != null) {
                            xpp.red = true;
                            root = rotateLeft(root, xpp);
                        }
                    }
                }
            }
        }
    }
    static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
                                               TreeNode<K,V> x) {
        for (TreeNode<K,V> xp, xpl, xpr;;)  {
            if (x == null || x == root)
                return root;
            else if ((xp = x.parent) == null) {
                x.red = false;
                return x;
            }
            else if (x.red) {
                x.red = false;
                return root;
            }
            else if ((xpl = xp.left) == x) {
                if ((xpr = xp.right) != null && xpr.red) {
                    xpr.red = false;
                    xp.red = true;
                    root = rotateLeft(root, xp);
                    xpr = (xp = x.parent) == null ? null : xp.right;
                }
                if (xpr == null)
                    x = xp;
                else {
                    TreeNode<K,V> sl = xpr.left, sr = xpr.right;
                    if ((sr == null || !sr.red) &&
                        (sl == null || !sl.red)) {
                        xpr.red = true;
                        x = xp;
                    }
                    else {
                        if (sr == null || !sr.red) {
                            if (sl != null)
                                sl.red = false;
                            xpr.red = true;
                            root = rotateRight(root, xpr);
                            xpr = (xp = x.parent) == null ?
                                null : xp.right;
                        }
                        if (xpr != null) {
                            xpr.red = (xp == null) ? false : xp.red;
                            if ((sr = xpr.right) != null)
                                sr.red = false;
                        }
                        if (xp != null) {
                            xp.red = false;
                            root = rotateLeft(root, xp);
                        }
                        x = root;
                    }
                }
            }
            else { // symmetric
                if (xpl != null && xpl.red) {
                    xpl.red = false;
                    xp.red = true;
                    root = rotateRight(root, xp);
                    xpl = (xp = x.parent) == null ? null : xp.left;
                }
                if (xpl == null)
                    x = xp;
                else {
                    TreeNode<K,V> sl = xpl.left, sr = xpl.right;
                    if ((sl == null || !sl.red) &&
                        (sr == null || !sr.red)) {
                        xpl.red = true;
                        x = xp;
                    }
                    else {
                        if (sl == null || !sl.red) {
                            if (sr != null)
                                sr.red = false;
                            xpl.red = true;
                            root = rotateLeft(root, xpl);
                            xpl = (xp = x.parent) == null ?
                                null : xp.left;
                        }
                        if (xpl != null) {
                            xpl.red = (xp == null) ? false : xp.red;
                            if ((sl = xpl.left) != null)
                                sl.red = false;
                        }
                        if (xp != null) {
                            xp.red = false;
                            root = rotateRight(root, xp);
                        }
                        x = root;
                    }
                }
            }
        }
    }
    /**
     * Recursive invariant check
     */
    static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
        TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
            tb = t.prev, tn = (TreeNode<K,V>)t.next;
        if (tb != null && tb.next != t)
            return false;
        if (tn != null && tn.prev != t)
            return false;
        if (tp != null && t != tp.left && t != tp.right)
            return false;
        if (tl != null && (tl.parent != t || tl.hash > t.hash))
            return false;
        if (tr != null && (tr.parent != t || tr.hash < t.hash))
            return false;
        if (t.red && tl != null && tl.red && tr != null && tr.red)
            return false;
        if (tl != null && !checkInvariants(tl))
            return false;
        if (tr != null && !checkInvariants(tr))
            return false;
        return true;
    }
}
HashMap红黑树实现

 

posted @ 2019-07-22 11:13  、、、、、、、  阅读(282)  评论(0编辑  收藏  举报