【3D deep learning on Point cloud】(1)


Point cloud generation

Set comparison: given two sets of points, measure their discrepancy

key challenge: correspondence problem

Correspondence(1): optimal assignment

     Earth Mover's distance(EMD)

Correspondence(2):closest point

  Chamfer distance(CD):倒角距离。一种对于图像的距离变换,对于有特征点和非特征点的二值图像,此距离变换就是求解每一个点到最近特征点的距离。

  参考:简书

           CSDN

 


Required properties of distance metrics

  Geometric requirement

    reflects natural shape differences

    induce a nice space for shape interpolations

  Computational requirement

    define a loss function that is numerically easy to optimize

     to be used as a loss function, the metric has to be:

    • differentiable with respect to point locations
    • efficient to compute

 

 

posted @ 2019-05-27 15:23  iPresent  阅读(746)  评论(0编辑  收藏  举报