Leetcode: Triangle
近期都在复习英语。看见看得头都大了,并且阅读越做分数越低!换个环境,做做Leetcode试题!
题目:
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 =
11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
一道动态规划问题。在《动态规划:数塔问题》一文中已经具体描写叙述过这个问题(一个是求最大值,一个是求最小值)。有兴趣的能够參考这篇文章。
只是当时使用的是一个二维的数组,如今使用一个一维的数组对代码进行优化。
动态规划的递推公式为:dp[i][j] = min(dp[i+1][j], dp[i+1][j+1]) + triangle[i][j]
以下给出C++參考代码:
class Solution { public: int minimumTotal(vector<vector<int> > &triangle) { int row = triangle.size(); if (row == 0) return 0; vector<int> dp(row); // 初始化dp容大小为triangle最后一行数据的个数 for (size_t i = 0; i < row; ++i) { dp[i] = triangle[row - 1][i]; // dp初始化为triangle的最后一行 } // 动态规划 for (size_t i = row - 1; i > 0; --i) { for (size_t j = 0; j < triangle[i].size() - 1; ++j) { dp[j] = min(dp[j], dp[j + 1]) + triangle[i - 1][j]; } } return dp[0]; } };