POJ 1436 Horizontally Visible Segments (线段树·区间染色)
题意 在坐标系中有n条平行于y轴的线段 当一条线段与还有一条线段之间能够连一条平行与x轴的线不与其他线段相交 就视为它们是可见的 问有多少组三条线段两两相互可见
先把全部线段存下来 并按x坐标排序 线段树记录相应区间从右往左当前可见的线段编号(1...n) 超过一条就为0 然后从左往右对每条线段 先查询左边哪些线段和它是可见的 把可见关系存到数组中 然后把这条线段相应区间的最右端可见编号更新为这条线段的编号 最后暴力统计有多少组即可了
#include <cstdio> #include <algorithm> #include <cstring> #define lc p<<1, s, mid #define rc p<<1|1, mid+1, e #define mid ((s+e)>>1) using namespace std; const int N = 8005; int top[N * 8]; bool g[N][N]; struct seg { int y1, y2, x; } line[N]; bool cmp(seg a, seg b) { return a.x < b.x; } void build() { memset(g, 0, sizeof(g)); memset(top, 0, sizeof(top)); } void pushup(int p) { top[p] = (top[p << 1] == top[p << 1 | 1]) ? top[p << 1] : 0; } void pushdown(int p) { if(top[p]) { top[p << 1] = top[p << 1 | 1] = top[p]; top[p] = 0; } } void update(int p, int s, int e, int l, int r, int v) { if(l <= s && e <= r) { top[p] = v; return; } pushdown(p); if(l <= mid) update(lc, l, r, v); if(r > mid) update(rc, l, r, v); pushup(p); } void query(int p, int s, int e, int l, int r, int x) { if(top[p]) //p相应的区间已经仅仅可见一条线段 { g[top[p]][x] = 1; return; } if(s == e) return; if(l <= mid) query(lc, l, r, x); if(r > mid) query(rc, l, r, x); } int main() { int T, n, l, r; scanf("%d", &T); while(T--) { scanf("%d", &n); for(int i = 1; i <= n; ++i) scanf("%d%d%d", &line[i].y1, &line[i].y2, &line[i].x); sort(line + 1, line + n + 1, cmp); build(); for(int i = 1; i <= n; ++i) { //点化为区间会丢失间隔为1的区间 所以要乘以2 l = (line[i].y1) * 2; r = (line[i].y2) * 2; query(1, 0, N * 2, l, r, i); update(1, 0, N * 2, l, r, i); } int ans = 0; for(int i = 1; i <= n; ++i) { for(int j = i + 1; j <= n; ++j) { if(g[i][j]) for(int k = j + 1; k <= n; ++k) if(g[j][k] && g[i][k]) ++ans; } } printf("%d\n", ans); } return 0; } //Last modified : 2015-07-15 15:33
Horizontally Visible Segments
Description
There is a number of disjoint vertical line segments in the plane. We say that two segments are horizontally visible if they can be connected by a horizontal line segment that does not have any common points with other vertical segments. Three different vertical
segments are said to form a triangle of segments if each two of them are horizontally visible. How many triangles can be found in a given set of vertical segments?
Task
Write a program which for each data set:
reads the description of a set of vertical segments,
computes the number of triangles in this set,
writes the result.
Task
Write a program which for each data set:
reads the description of a set of vertical segments,
computes the number of triangles in this set,
writes the result.
Input
The first line of the input contains exactly one positive integer d equal to the number of data sets, 1 <= d <= 20. The data sets follow.
The first line of each data set contains exactly one integer n, 1 <= n <= 8 000, equal to the number of vertical line segments.
Each of the following n lines consists of exactly 3 nonnegative integers separated by single spaces:
yi', yi'', xi - y-coordinate of the beginning of a segment, y-coordinate of its end and its x-coordinate, respectively. The coordinates satisfy 0 <= yi' < yi'' <= 8 000, 0 <= xi <= 8 000. The segments are disjoint.
The first line of each data set contains exactly one integer n, 1 <= n <= 8 000, equal to the number of vertical line segments.
Each of the following n lines consists of exactly 3 nonnegative integers separated by single spaces:
yi', yi'', xi - y-coordinate of the beginning of a segment, y-coordinate of its end and its x-coordinate, respectively. The coordinates satisfy 0 <= yi' < yi'' <= 8 000, 0 <= xi <= 8 000. The segments are disjoint.
Output
The output should consist of exactly d lines, one line for each data set. Line i should contain exactly one integer equal to the number of triangles in the i-th data set.
Sample Input
1 5 0 4 4 0 3 1 3 4 2 0 2 2 0 2 3
Sample Output
1
Source