python数据结构_大顶堆和小顶堆
大顶堆和小顶堆
相关介绍可参看:北京大学空地学院数据结构与算法 第六章 6.8.2.2 小节
代码实现如下
class Heap:
"""二叉堆的实现 小顶堆"""
def __init__(self):
self.heapList = [0] # 默认一个 0 做占位,使得根节点的索引在 1 上
self.currentSize = 0 # 最大节点的索引位置
def perUp(self, i):
"""将小节点逐步上升"""
while i // 2 > 0:
if self.heapList[i] < self.heapList[i // 2]:
self.heapList[i], self.heapList[i // 2] = self.heapList[i // 2], self.heapList[i]
i = i // 2
def insert(self, k):
"""插入节点"""
self.heapList.append(k)
self.currentSize += 1
self.perUp(self.currentSize)
def minChild(self, i):
"""获取左右两个子节点里较小的那个子节点的索引"""
if i * 2 + 1 > self.currentSize: # 右子节点超出节点数量
return i * 2
else:
if self.heapList[i * 2] < self.heapList[i * 2 + 1]:
return i * 2
else:
return i * 2 + 1
def perDown(self, i):
"""将节点下沉到合适位置"""
while (i * 2) <= self.currentSize: # 说明有子节点
mc = self.minChild(i)
if self.heapList[i] > self.heapList[mc]:
self.heapList[i], self.heapList[mc] = self.heapList[mc], self.heapList[i]
i = mc
def delMin(self):
"""删除小节点"""
retval = self.heapList[1] # 删除索引位置为 1 的节点
self.heapList[1] = self.heapList[self.currentSize]
self.heapList.pop()
self.currentSize -= 1
self.perDown(1)
return retval
def buildHeap(self, alist):
i = len(alist) // 2
self.currentSize = len(alist)
self.heapList += alist[:]
while i > 0:
self.perDown(i)
i -= 1
class HeapList(object):
"""大顶推"""
def __init__(self):
self.heaplist = [0]
self.size = 0
def buildHeap(self, alist):
i = len(alist) // 2
self.size = len(alist)
self.heaplist += alist[:]
while i > 0:
self.percDown(i)
i -= 1
def percUp(self, i):
while i // 2 > 0:
if self.heaplist[i] > self.heaplist[i // 2]:
self.heaplist[i], self.heaplist[i // 2] = self.heaplist[i // 2], self.heaplist[i]
i //= 2
def insert(self, k):
self.heaplist.append(k)
self.size += 1
self.percUp(self.size)
def maxChild(self, i):
if i * 2 + 1 > self.size:
return i * 2
else:
if self.heaplist[i * 2] > self.heaplist[i * 2 + 1]:
return i * 2
else:
return i * 2 + 1
def percDown(self, i):
while i * 2 <= self.size:
mc = self.maxChild(i)
if self.heaplist[i] < self.heaplist[mc]:
self.heaplist[i], self.heaplist[mc] = self.heaplist[mc], self.heaplist[i]
i = mc
def delMax(self):
retval = self.heaplist[1]
self.heaplist[1] = self.heaplist[self.size]
self.size -= 1
self.heaplist.pop()
self.percDown(1)
return retval
# 采用大顶堆的方式,制作容量为 k 的大顶堆,向堆中添加元素时,比堆顶值小,就弹出堆顶,并将此元素添加进堆。这就保证,最后遍历完成后,
# 我们获得了比堆顶小的 k-1 个最小值
# 时间复杂度 O(nlogK) 因为只维护 K 大小的堆
class Solution:
def getLeastNumbers(self, arr, k):
if k == 0:
return []
heaplist = HeapList()
heaplist.buildHeap(arr[:k])
for i in arr[k: ]:
if i < heaplist.heaplist[1]:
heaplist.delMax()
heaplist.insert(i)
return heaplist.heaplist[1:]
if __name__ == '__main__':
solution = Solution()
arrlist = [1, 2, 3, 4, 5, 6, 7, 8]
res = solution.getLeastNumbers(arrlist, 3)
print(res)