【机器学习】Boosting和Bagging的差别

boosting和bagging的差别:

 

bagging中的模型是强模型,偏差低,方差高。目标是降低方差。在bagging中,每个模型的bias和variance近似相同,但是互相相关性不太高,因此一般不能降低Bias,而一定程度上能降低variance。典型的bagging是random forest。

 

boosting中每个模型是弱模型,偏差高,方差低。目标是通过平均降低偏差。boosting的基本思想就是用贪心法最小化损失函数,显然能降低偏差,但是通常模型的相关性很强,因此不能显著降低variance。典型的Boosting是adaboost,另外一个常用的并行Boosting算法是GBDT(gradient boosting decision tree)。这一类算法通常不容易出现过拟合。

 

过拟合的模型,通常variance比较大,这时应该用bagging对其进行修正。

欠拟合的模型,通常Bias比较大,这时应该可以用boosting进行修正。使用boosting时, 每一个模型可以简单一些。

金融常见的问题,是只用linear regression,这样一般来讲是欠拟合的,因此需要引入一些非线性的特征,欠拟合的模型可以先使用boosting尝试一下,如果效果不好,再使用其他的方法。过拟合的方法,通常使用bagging是会有一定的作用的。

 

posted on 2016-08-02 14:14  yesuuu  阅读(940)  评论(0编辑  收藏  举报

导航