tensor乘运算
**torch.mul(a, b) **是矩阵 对应位相乘,即点乘操作, a和b的维度必须相等,a的维度是(1,2), 则b的维度必须是(1,2), 返回还是(1,2)的矩阵
torch.mm(a,b)是矩阵a和b矩阵相乘,a的维度是(1,2),b的维度是(2,3),返回是(1,3)的矩阵
torch.bmm(a,b)是矩阵a和b在维度1、2上矩阵相乘,一般要求是 三维矩阵,a的维度是(64,1,2),b的维度是(64,2,3)返回的是(64,1,3)矩阵
import torch
if __name__ == "__main__":
x = torch.ones(1, 2)
y = torch.ones(1, 2) * 2
z = torch.mul(x, y)
print("torch.mul() example ")
print("x.shape is ", x.shape)
print("y.shape is ", y.shape)
print("z.shape is ", z.shape) ## [1, 2]
x = torch.ones(1, 2)
y = torch.ones(2, 3)
z = torch.mm(x, y)
print("torch.mm() example ")
print("x.shape is ", x.shape)
print("y.shape is ", y.shape)
print("z.shape is ", z.shape) ## [1,3]
x = torch.randn(64, 1, 2)
y = torch.randn(64, 2, 3)
z = torch.bmm(x, y)
print("torch.bmm example ")
print("x.shape is ", x.shape)
print("y.shape is ", y.shape)
print("z.shape is ", z.shape) ## [64, 1, 3]
如果有一天我们淹没在茫茫人海中庸碌一生,那一定是我们没有努力活得丰盛