朴素贝叶斯算法

【实验目的】

理解朴素贝叶斯算法原理,掌握朴素贝叶斯算法框架。

【实验内容】

针对下表中的数据,编写python程序实现朴素贝叶斯算法(不使用sklearn包),对输入数据进行预测;
熟悉sklearn库中的朴素贝叶斯算法,使用sklearn包编写朴素贝叶斯算法程序,对输入数据进行预测;

【实验报告要求】

对照实验内容,撰写实验过程、算法及测试结果;
代码规范化:命名规则、注释;
查阅文献,讨论朴素贝叶斯算法的应用场景。

 

色泽 根蒂 敲声 纹理 脐部 触感 好瓜
青绿 蜷缩 浊响 清晰 凹陷 碍滑
乌黑 蜷缩 沉闷 清晰 凹陷 碍滑
乌黑 蜷缩 浊响 清晰 凹陷 碍滑
青绿 蜷缩 沉闷 清晰 凹陷 碍滑
浅白 蜷缩 浊响 清晰 凹陷 碍滑
青绿 稍蜷 浊响 清晰 稍凹 软粘
乌黑 稍蜷 浊响 稍糊 稍凹 软粘
乌黑 稍蜷 浊响 清晰 稍凹 硬滑
乌黑 稍蜷 沉闷 稍糊 稍凹 硬滑
青绿 硬挺 清脆 清晰 平坦 软粘
浅白 硬挺 清脆 模糊 平坦 硬滑
浅白 蜷缩 浊响 模糊 平坦 软粘
青绿 稍蜷 浊响 稍糊 凹陷 硬滑
浅白 稍蜷 沉闷 稍糊 凹陷 硬滑
乌黑 稍蜷 浊响 清晰 稍凹 软粘
浅白 蜷缩 浊响 模糊 平坦 硬滑
青绿 蜷缩 沉闷 稍糊 稍凹 硬滑

 

import numpy as np
import pandas as pd
data_list = [
                    ['青绿', '蜷缩', '浊响', '清晰', '凹陷', '碍滑', 'YES'],
                    ['乌黑', '蜷缩', '沉闷', '清晰', '凹陷', '碍滑', 'YES'],
                    ['乌黑', '蜷缩', '浊响', '清晰', '凹陷', '碍滑', 'YES'],
                    ['青绿', '蜷缩', '沉闷', '清晰', '凹陷', '碍滑', 'YES'],
                    ['浅白', '蜷缩', '浊响', '清晰', '凹陷', '碍滑', 'YES'],
                    ['青绿', '稍缩', '浊响', '清晰', '稍凹', '软粘', 'YES'],
                    ['乌黑', '稍缩', '浊响', '清晰', '稍凹', '软粘', 'YES'],
                    ['乌黑', '稍缩', '浊响', '清晰', '稍凹', '硬滑', 'YES'],
                    ['乌黑', '稍缩', '沉闷', '稍糊', '稍凹', '硬滑', 'NO'],
                    ['青绿', '硬挺', '清脆', '清晰', '平坦', '软粘', 'NO'],
                    ['浅白', '硬挺', '清脆', '模糊', '平坦', '硬滑', 'NO'],
                    ['浅白', '蜷缩', '浊响', '模糊', '平坦', '软粘', 'NO'],
                    ['青绿', '稍缩', '浊响', '稍糊', '凹陷', '硬滑', 'NO'],
                    ['浅白', '稍缩', '沉闷', '稍糊', '凹陷', '硬滑', 'NO'],
                    ['乌黑', '稍缩', '浊响', '清晰', '稍凹', '软粘', 'NO'],
                    ['浅白', '蜷缩', '浊响', '模糊', '稍凹', '硬滑', 'NO'],
                    ['青绿', '蜷缩', '沉闷', '稍糊', '稍凹', '硬滑', 'NO']
                ]

classes_list = ['色泽','根蒂','敲声','纹理','脐部','触感','好瓜']
property_list = [
                    '青绿','乌黑','浅白',
                    '蜷缩','稍蜷','硬挺',
                    '浊响','沉闷','清脆',
                    '清晰','稍糊','模糊',
                    '凹陷','平坦','稍凹',
                    '硬滑','软粘',
                  ]

 

import pandas as pd
import numpy  as np

class NaiveBayes:
    def __init__(self):
        self.model = {}

    def fit(self, xTrain, yTrain = pd.Series()):
        if not yTrain.empty:
            xTrain = pd.concat([xTrain, yTrain], axis=1) 
        self.model = self.buildNaiveBayes(xTrain) 
        return self.model

    def buildNaiveBayes(self, xTrain):
        yTrain = xTrain.iloc[:,-1]   

        yTrainCounts = yTrain.value_counts()

        yTrainCounts = yTrainCounts.apply(lambda x : (x + 1) / (yTrain.size + yTrainCounts.size))
        retModel = {} 
        for nameClass, val in yTrainCounts.items():
            retModel[nameClass] = {'PClass': val, 'PFeature':{}} 
        propNamesAll = xTrain.columns[:-1]   
        allPropByFeature = {}
        for nameFeature in propNamesAll:
            allPropByFeature[nameFeature] = list(xTrain[nameFeature].value_counts().index)
        for nameClass, group in xTrain.groupby(xTrain.columns[-1]): 
            for nameFeature in propNamesAll:
                eachClassPFeature = {}
                propDatas = group[nameFeature]
                propClassSummary = propDatas.value_counts()
                for propName in allPropByFeature[nameFeature]:
                    if not propClassSummary.get(propName):
                        propClassSummary[propName] = 0
                Ni = len(allPropByFeature[nameFeature])
                propClassSummary = propClassSummary.apply(lambda x : (x + 1) / (propDatas.size + Ni))
                for nameFeatureProp, valP in propClassSummary.items():
                    eachClassPFeature[nameFeatureProp] = valP
                retModel[nameClass]['PFeature'][nameFeature] = eachClassPFeature
        return retModel

    def predictBySeries(self, data):
        curMaxRate = None
        curClassSelect = None
        for nameClass, infoModel in self.model.items():
            rate = 0
            rate += np.log(infoModel['PClass'])
            PFeature = infoModel['PFeature']     
   
            for nameFeature, val in data.items():
                propsRate = PFeature.get(nameFeature)
                if not propsRate:
                    continue
                rate += np.log(propsRate.get(val, 0))
            if curMaxRate == None or rate > curMaxRate:
                curMaxRate = rate
                curClassSelect = nameClass
        return curClassSelect
    def predict(self, data):
        if isinstance(data, pd.Series):    
            return self.predictBySeries(data)
        return data.apply(lambda d: self.predictBySeries(d), axis=1)

dataTrain = data_df
naiveBayes = NaiveBayes()
treeData = naiveBayes.fit(dataTrain)
import json
print(json.dumps(treeData, ensure_ascii=False))

pd = pd.DataFrame({'预测值':naiveBayes.predict(dataTrain), '正取值':dataTrain.iloc[:,-1]})
print(pd)
print('正确率:%f%%'%(pd[pd['预测值'] == pd['正取值']].shape[0] * 100.0 / pd.shape[0]))

 

from sklearn.model_selection import train_test_split
import numpy as np
data_list = [#青绿 0 乌黑 1 浅白 2  蜷缩 0 稍缩 1  硬挺 2 浊响 0 沉闷 1 清脆 2 清晰 0 稍糊 1 模糊 2 平坦 0 稍凹 1 凹陷 2 碍滑 0 软粘 1 硬滑 2
                    [0, 0, 0, 0, 2, 0, 1],
                    [1, 0, 1, 0, 2, 0, 1],
                    [1, 0, 0, 0, 2, 0, 1],
                    [0, 0, 1, 0, 2, 0, 1],
                    [2, 0, 0, 0, 2, 0, 1],
                    [0, 1, 0, 0, 1, 1, 1],
                    [1, 1, 0, 0, 1, 1, 1],
                    [1, 1, 0, 0, 1, 2, 1],
                    [1, 1, 1, 1, 1, 2, 0],
                    [0, 2, 2, 0, 0, 1, 0],
                    [2, 2, 2, 2, 0, 2, 0],
                    [2, 0, 0, 2, 0, 1, 0],
                    [0, 1, 0, 1, 2, 2, 0],
                    [2, 1, 1, 1, 2, 2, 0],
                    [1, 1, 0, 0, 1, 1, 0],
                    [2, 0, 0, 2, 1, 2, 0],
                    [0, 0, 1, 1, 1, 2, 0]
        ]
target = np.array([0,1,2,3,4,5,6],dtype='float32')
data = np.array(data_list,dtype='float32')



from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(data.T,target,random_state=1)  
nb_clf = GaussianNB() 
nb_clf.fit(x_train,y_train)  
a=nb_clf.predict(x_test)    
acc_score = nb_clf.score(x_test,y_test)  

运行结果:

 

posted @   1nfinite  阅读(37)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· ollama系列1:轻松3步本地部署deepseek,普通电脑可用
· 按钮权限的设计及实现
· 【杂谈】分布式事务——高大上的无用知识?
点击右上角即可分享
微信分享提示