摘要: 文章导读: 1.交叉熵损失函数 1.1 交叉熵损失函数介绍 1.2 在MNIST数字分类上使用交叉熵损失函数 1.3 交叉熵的意义以及来历 1.4 Softmax 2. 过拟合和正则化 2.1 过拟合 2.2 正则化 2.3 为什么正则化可以减轻过拟合问题 2.4 正则化的其它方法 3. 参数初始化 阅读全文
posted @ 2017-09-07 17:25 野路子程序员 阅读(2441) 评论(4) 推荐(2) 编辑