Processing math: 27%

Prove Cauchy's inequality by induction

Cauchy’s inequality:If xi,yi(1in) are non-negative real numbers,then

(x1y1++xnyn)2(x21++x2n)(y21++y2n)

The equality holds if and only if (x1,,xn) and (y1,,yn) are linearly dependent.


Proof:When n=1,the inequality obviously holds.And it is easy to verify that x1 and y1 are linearly dependent.Suppose when n=k,the inequality holds,that is

(x1y1++xkyk)2(x21++x2k)(y21++y2k)

And the equality holds if and only if (x1,,xk) and (y1,,yk) are linearly dependent.In case of n=k+1,


(x1y1++xkyk+xk+1yk+1)2=(x1y1++xkyk)2+2xk+1yk+1(x1y1++xkyk)+(xk+1yk+1)2(x21++x2k)(y21++y2k)+2xk+1yk+1(x1y1++xkyk)+(xk+1yk+1)2(x21++x2k)(y21++y2k)+2xk+1yk+1(x21++x2k)(y21++y2k)+(xk+1yk+1)2(x21++x2k)(y21++y2k)+x2k+1(y21++y2k)+y2k+1(x21++x2k)+(xk+1yk+1)2=(x21++x2k+1)(y21++y2k+1)


The equality holds if and only if :

 

  • {(x_1,\cdots,x_k)} and {(y_1,\cdots,y_k)} are linearly dependent.
  • {x_{k+1}\sqrt{y_1^2+\cdots +y_k^2}=y_{k+1}\sqrt{x_1^2+\cdots +x_k^2}}

 

{(x_1,\cdots ,x_k)} and {(y_1,\cdots ,y_k)} are linearly dependent,which means that {a_1(x_1,\cdots ,x_k)+a_2(y_1,\cdots,y_k)=0} while {a_1} or {a_2} are not {0},if {a_1=0},then all of {y_i(1\leq i\leq k)} are 0,so {y_{k+1}=0} or all of {x_i(1\leq i\leq k)} are 0,whatever the case,we can easily verify that {(x_1,\cdots ,x_{k+1})} and {(y_1,\cdots ,y_{k+1})} are linearly dependent.Similary,when {a_2=0} ,we can get the same conclusion.When both {a_1} and {a_2} are not 0,then {(x_1,\cdots,x_k)=\lambda (y_1,\cdots,y_k)(\lambda\neq 0)}so {\frac{\sqrt{x_1^2+\cdots +x_k^2}}{\sqrt{y_1^2+\cdots +y_k^2}}=\lambda} so {\frac{x_{k+1}}{y_{k+1}}=\lambda }so {(x_1,\cdots,x_{k+1})} and {(y_1,\cdots,y_{k+1})} are linearly dependent.

 

And,it is easy to verify that when {(x_1,\cdots,x_n)} and {(y_1,\cdots,y_n)} are linearly dependent,the equality holds.{\Box}

 


 

Now I’d like to talk about another point.Why {x_i,y_i(1\leq i\leq n)} should be non-negative?In fact,this prerequisite is not necessary,because

|x_1y_1+\cdots +x_ny_n|\leq |x_1||y_1|+\cdots +|x_n||y_n|

The equality holds if and only if {x_1y_1,\cdots,x_ny_n} are all non-negative or all negative.So,{(x_1y_1+\cdots+x_ny_n)^2\leq (|x_1||y_1|+\cdots +|x_n||y_n|)^2\leq (x_1^2+\cdots+x_n^2)(y_1^2+\dots+y_n^2)}
The equality holds iff :

 

  • {(|x_1|,\cdots,|x_n|)} and {(|y_1|,\cdots,|y_n|)} are linearly dependent.

 

  • {x_1y_1,\cdots,x_ny_n} are all non-negative or all negative .

 

It is easy to verify that the above two point is equivalent to this point: {(x_1,\cdots,x_n)} and {(y_1,\cdots,y_n)} are linearly dependent.

posted @   叶卢庆  阅读(210)  评论(0编辑  收藏  举报
编辑推荐:
· Java 中堆内存和栈内存上的数据分布和特点
· 开发中对象命名的一点思考
· .NET Core内存结构体系(Windows环境)底层原理浅谈
· C# 深度学习:对抗生成网络(GAN)训练头像生成模型
· .NET 适配 HarmonyOS 进展
阅读排行:
· 本地部署 DeepSeek:小白也能轻松搞定!
· 如何给本地部署的DeepSeek投喂数据,让他更懂你
· 从 Windows Forms 到微服务的经验教训
· 李飞飞的50美金比肩DeepSeek把CEO忽悠瘸了,倒霉的却是程序员
· 超详细,DeepSeek 接入PyCharm实现AI编程!(支持本地部署DeepSeek及官方Dee
点击右上角即可分享
微信分享提示